CTC-0001 (NEW 05/2018)

ROAD REPAIR AND ACCOUNTABILITY ACT OF 2017

PROJECT BASELINE AGREEMENT

Purchase Zero Emission Buses – Phase 2

Resolution

LPP-P-1920-10B

(will be completed by CTC)

1.	FUNDING PROGRAM
	Active Transportation Program
	☐ Local Partnership Program (Competitive)
	☐ Solutions for Congested Corridors Program
	State Highway Operation and Protection Program
	☐ Trade Corridor Enhancement Program
2.	PARTIES AND DATE
2.1	This Project Baseline Agreement (Agreement) for the <i>Purchase Zero Emission Buses – Phase 2 Project</i> , effective on, June 24, 2020 (will be completed by CTC), is made by and between the California Transportation Commission (Commission), the California Department of Transportation (Caltrans), the Project Applicant, <i>Alameda-Contra Costa Transit District</i> , and the Implementing Agency, sometimes collectively referred to as the "Party".
3.	RECITAL
3.2	Whereas at its May 16, 2018 meeting the Commission approved the Local Partnership Program (Competitive) Program, and included in this program of projects the <i>Purchase Hybrid Buses Project</i> , the parties are entering into this Project Baseline Agreement to document the project cost, schedule, scope and benefits, as detailed on the Project Programming Request Form attached hereto as <u>Exhibit A</u> and the Project Report attached hereto as <u>Exhibit B</u> , as the baseline for project monitoring by the Commission.
3.3	Whereas at its June 24, 2020 meeting, the Commission approved this modification to the <i>Purchase Hybrid Buses Project</i> , the parties are entering into this Project Baseline Agreement to document the project cost, schedule, scope and benefits, as detailed on the Project Programming Request Form attached hereto as Exhibit A and the Supplemental Project Report attached hereto as Exhibit B, as the baseline for project monitoring by the Commission.
3.4	The undersigned Project Applicant certifies that the funding sources cited are committed and expected to be available; the estimated costs represent full project funding; and the scope and description of benefits is the best estimate possible.
4.	GENERAL PROVISIONS
	The Project Applicant, Implementing Agency, and Caltrans agree to abide by the following provisions:
4.1	To meet the requirements of the Road Repair and Accountability Act of 2017 (Senate Bill [SB] 1, Chapter 5, Statutes of 2017) which provides the first significant, stable, and on-going increase in state transportation funding in more than two decades.
4.2	To adhere, as applicable, to the provisions of the Commission:
	Resolution LPP-P-1920-06, amending resolution LPP-P-1718-01, "Adoption of Program of Projects for the Local Partnership Program", dated May 16, 2018.

- 4.3 All signatories agree to adhere to the Commission's Local Partnership Program Guidelines. Any conflict between the programs will be resolved at the discretion of the Commission.
- 4.4 All signatories agree to adhere to the Commission's SB 1 Accountability and Transparency Guidelines and policies, and program and project amendment processes.
- 4.5 The Alameda-Contra Costa Transit District agrees to secure funds for any additional costs of the project.
- 4.6 The Alameda-Contra Costa Transit District agrees to report to Caltrans on a quarterly basis on the progress made toward the implementation of the project, including scope, cost, schedule, outcomes, and anticipated benefits.
- 4.7 Caltrans agrees to prepare program progress reports on a quarterly basis; after July 2019, reports will be on a semi-annual basis and include information appropriate to assess the current state of the overall program and the current status of each project identified in the program report.
- 4.8 The Alameda-Contra Costa Transit District agrees to submit a timely Completion Report and Final Delivery Report as specified in the Commission's SB 1 Accountability and Transparency Guidelines.
- 4.9 All signatories agree to maintain and make available to the Commission and/or its designated representative, all work related documents, including without limitation engineering, financial and other data, and methodologies and assumptions used in the determination of project benefits during the course of the project, and retain those records for four years from the date of the final closeout of the project. Financial records will be maintained in accordance with Generally Accepted Accounting Principles.
- 4.10 The Transportation Inspector General of the Independent Office of Audits and Investigations has the right to audit the project records, including technical and financial data, of the Department of Transportation, the Project Applicant, the Implementing Agency, and any consultant or sub-consultants at any time during the course of the project and for four years from the date of the final closeout of the project, therefore all project records shall be maintained and made available at the time of request. Audits will be conducted in accordance with Generally Accepted Government Auditing Standards.

5. SPECIFIC PROVISIONS AND CONDITIONS

5.1 <u>Project Schedule and Cost</u> See Project Programming Request Form, attached as Exhibit A.

5.2 Project Scope

See Supplemental Project Report or equivalent, attached as <u>Exhibit B</u>. At a minimum, the attachment shall include the cover page, evidence of approval, executive summary, and a link to or electronic copy of the full document.

5.3 Other Project Specific Provisions and Conditions

Attachments:

Exhibit A: Project Programming Request Exhibit B: Supplemental Project Report

SIGNATURE PAGE TO PROJECT BASELINE AGREEMENT

Purchase Zero Emission Buses

Resolution LPP-P-1920-10B

III	
mid a wat	11 May 2020
Michael Hursh	Date
Alameda-Contra Costa Transit District, General Manager	
Project Applicant	
und a wat	11 May 2020
Michael Hursh	Date
Alameda-Contra Costa Transit District, City Manager	
Implementing Agency	
Tony Tavares Director, District 4	9 18 2020 Date
California Department of Transportation	
Toks Omishakin	6 · 9 · 20 Date
Director	
California Department of Transportation	
Wilch W-	08/18/21
Mitch Weiss	Date
Executive Director	
California Transportation Commission	

DTP-0001 (Revis	sed Ma	ar, 1 2018 v7.08)						Genei	ral Instructions
Amendment (Exi	sting I	Project) Yes						Date:	03/10/20
District		EA	Project	: ID	PPNO	MPO	D		
04			0419000	-	2320B				
County	Ro	oute/Corridor	PM Bk	PM Ahd		Project Spo	nsor/Lead	Agency	
ALA						Alameda Contra			i
					М	PO		Eleme	ent
						TC		MT	
Project M	anage	er/Contact	Ph	one		E-ma	ail Addres	s	
	velyn I		(510) 8	91-5405		eng@	actransit.o	<u>rg</u>	
Project Title		-	. ,	L					
	missi	on Buses - Phase	e 2						
		nits), Description		f Work)					
					lated cities and a	adjacent unincorp	orated area	e This proi	ect will procure
						ocured buses will			•
		•				stems and bike r		od With I Cal-	unic bus dispate
and tracking sys	terris,	Cicciionio and ce	isii iaic coii	collori, traffic	signal priority sy	Jaconia and bike i	aons.		
Component					Implement	ing Agency			
PA&ED		Alameda Contra	Costa Tran	sit District	implement	ing Agency			
PS&E		Alameda Contra	-						
Right of Way		Alameda Contra	-						
Construction		Alameda Contra	Costa Tran	sit District					
Legislative Dist	ricts								
Assembly:		15,17,18,20,25	Sena	ate:	9,10,11	Congress	ional:	1	1,12,13,15
Project Benefits	3	-, , -, -, -			-, -,	I I I I I			, , -, -
-		iect include 1 re	ducina aree	enhouse dase	es as all buses n	urchased will be :	zero emissi	ion buses 2	meet increasing
		•	0 0	•		iding rail and ferry			
								IVC DISauva	maged
Communities be	iter by	providing greate	i ali aliu eli	viioriinentai t	quality with new 2	zero emission bu	565.		
Purpose and Ne									
,	•				. With buses reti	ring, there is a ne	ed to purcl	hase new bi	uses to replace
them in order to	mainta	ain fleet size and	service leve	els.					
	Ca	tegory			Unit	Total			
Intercity Rail/Mas		• •	Rail	car(s) / transi	Each	40			
	-5 114		T COII	(-) / tiailsi	Lacii	1.0			
								+	
								-	
ADA Improvem	onto	NI.	Dil	o/Dod Imara	vomente N		Dovorsil	olo Long on	alvoio N.
ADA Improvem	ents	NO	BII	ke/Ped Impro	ovements No		Reversit	ole Lane and	<mark>alysis</mark> No

ADA Improvements No	Bike/Ped Improvem	ents No		Reversib	le Lane an	<mark>alysis</mark> No
Inc. Sustainable Communities Strategy Goals	Yes		Reduces Greenh	ouse Gas	Emissions	Yes
Project Milestone					Existing	Proposed
Project Study Report Approved						
Begin Environmental (PA&ED) Phase						06/01/19
Circulate Draft Environmental Document	Docu	ıment Type	ND			12/01/19
Draft Project Report						
End Environmental Phase (PA&ED Milestone	e)					02/28/20
Begin Design (PS&E) Phase				10/0	1/2018	03/31/20
End Design Phase (Ready to List for Advertise	sement Milestone)			12/0	1/2018	07/01/20
Begin Right of Way Phase						
End Right of Way Phase (Right of Way Certi	fication Milestone)					
Begin Construction Phase (Contract Award N	filestone)			12/0	1/2018	12/31/20
End Construction Phase (Construction Contr	act Acceptance Milestor	ne)		06/0	1/2020	12/31/22
Begin Closeout Phase				07/0	1/2020	03/01/23
End Closeout Phase (Closeout Report)						03/01/24

PROJECT PROGRAMMING REQUEST

DTP-0001 (Revised Mar, 1 2018 v7.08)

Additional Information

The project milestone schedule and funding info provided are for Phase 1 and Phase 2 of the project. The environmental benefits of replacing 40 diesel buses with 40 zero-emission buses are significant, estimated at an 97% reduction in particulate matter PM2.5, and 100% reduction in other greenhouse gases. In addition, 40 zero-emission buses also save much more in terms of greenhouse gas production, measured by grams of CO2e per mile. The 40 zero-emission buses would produce only 33% of what 59 diesel-hybrid buses would emit, based on 1,078 grams of CO2e per mile for a zero-emission bus, compared to 2,212 grams for a diesel-hybrid bus.

Date: 03/10/20

greenhouse gases will be reduced by purchasing 40 zero-emission buses instead of 59 diesel hybrids. The environmental benefits of purchasing 40 zero-emission buses instead of 59 diesel hybrid buses are compared in this table:

Greenhouse Gas Type□	59 Diesel Hybrid Buses	40 Zero Emission Buse	s Percentage reduction
PM 2.5 (metric tons)	0.1217	0.0024	97%
PM10 (metric tons)	0.1217	0	100%
CO2 (metric tons)	3624.9600	0 1	00%
CO (metric tons)	29.3156	0	100%
NOx (metric tons)	14.9344	0	100%
CO2e per mile	125,198	43,120	50%

PROJECT PROGRAMMING REQUEST

DTP-0001 (Revised Mar, 1 2018 v7.08)											
District	County	Route	EA	Project ID	PPNO	Alt. ID					
04	ALA, ,	, ,		0419000094	2320B						
Project Title:	Purchase Zero Emissio	n Buses - Phase 2									

Component	Prior	18-19	19-20	20-21	21-22	22-23	23-24+	Total	Implementing Agency
E&P (PA&ED)		253						253	Alameda Contra Costa Transit
PS&E									Alameda Contra Costa Transit
R/W SUP (CT)									Alameda Contra Costa Transit
CON SUP (CT)									Alameda Contra Costa Transit
R/W									Alameda Contra Costa Transit
CON		61,947						61,947	Alameda Contra Costa Transit
TOTAL		62,200						62,200	
		Prop	osed Total	Project Cos	st (\$1,000s)				Notes
E&P (PA&ED)		1,006						1,006	
PS&E				5,000				5,000	
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON		40,000						40,000	
TOTAL		41,006		5,000				46,006	1

Fund No. 1:	State SB1	LPP - Local	Partnersh	p Program	- Formula c	listribution	(LPP-F)		Program Code
		30.10.724.100							
Component	Prior	18-19	19-20	20-21	21-22	22-23	23-24+	Total	Funding Agency
E&P (PA&ED)		253						253	СТС
PS&E									\$253 PAED voted 10/17/18
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL		253						253	1
	•		Proposed	Funding (\$1	,000s)				Notes
E&P (PA&ED)		253						253	These funds were used for
PS&E									Phase 1.
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL		253						253	

Fund No. 2:	Fund No. 2: Local Funds - Local Transportation Funds (LTF)									
			Existing F	unding (\$1	,000s)				20.10.400.100	
Component	Prior	18-19	19-20	20-21	21-22	22-23	23-24+	Total	Funding Agency	
E&P (PA&ED)									AC Transit	
PS&E										
R/W SUP (CT)										
CON SUP (CT)										
R/W										
CON		46,947						46,947		
TOTAL		46,947						46,947	1	
	•		Proposed	Funding (\$1	I,000s)				Notes	
E&P (PA&ED)		253						253	Match to SB1 LPP Formula	
PS&E									funds. These funds were	
R/W SUP (CT)									used for Phase 1.	
CON SUP (CT)										
R/W									1	
CON									1	
TOTAL		253						253	1	

Fund No. 3:	State SB1	Program Code										
	Existing Funding (\$1,000s)											
Component	Prior	18-19	19-20	20-21	21-22	22-23	23-24+	Total	Funding Agency			
E&P (PA&ED)									СТС			
PS&E												
R/W SUP (CT)												
CON SUP (CT)												
R/W												
CON		15,000						15,000				
TOTAL		15,000						15,000				
			Proposed I	Funding (\$1	I,000s)				Notes			
E&P (PA&ED)									These funds will be used in			
PS&E									Phase 2 for bus purchases.			
R/W SUP (CT)									One year allocation			
CON SUP (CT)									extension granted by CTC			
R/W									in June 2019.			
CON		15,000						15,000				
TOTAL		15,000						15,000				

Fund No. 4:	TIRCP								Program Code				
	Existing Funding (\$1,000s)												
Component	Prior	18-19	19-20	20-21	21-22	22-23	23-24+	Total	Funding Agency				
E&P (PA&ED)									CalSTA				
PS&E													
R/W SUP (CT)													
CON SUP (CT)													
R/W													
CON													
TOTAL									1				
			Proposed	Funding (\$1	,000s)				Notes				
E&P (PA&ED)		500						500	\$500,000 was used for				
PS&E				5,000				5,000	Phase 1. \$5 million will be				
R/W SUP (CT)									used for Phase 2.				
CON SUP (CT)													
R/W													
CON													
TOTAL		500		5,000				5,500					

Fund No. 5:	Transit Ca		Program Code										
	Existing Funding (\$1,000s)												
Component	Prior	18-19	19-20	20-21	21-22	22-23	23-24+	Total	Funding Agency				
E&P (PA&ED)									FTA, MTC				
PS&E													
R/W SUP (CT)													
CON SUP (CT)													
R/W													
CON													
TOTAL													
			Proposed F	unding (\$1	,000s)				Notes				
E&P (PA&ED)									These funds will be used				
PS&E									for Phase 2 bus purchases				
R/W SUP (CT)									and serve as match for SB1				
CON SUP (CT)									LPP funds.				
R/W													
CON		25,000						25,000					
TOTAL		25,000						25,000					

PROJECT PROGRAMMING REQUEST

DTP-0001 (Revised Mar, 1 2018 v7.08)

Complete this page for amendments only

District	County	Route	EA	Project ID	PPNO	Alt. ID
04	ALA			0419000094	2320B	

Date: 03/10/20

SECTION 1 - All Projects

Project Background	Proi	ect	Backg	round
--------------------	------	-----	-------	-------

Originally SB1 Competitive funds were for 59 diesel-hybrid buses. AC Transit was approached by TIRCP to combine that grant with SB1 Competitive to purchase zero-emission buses.

Programming Change Requested

Purchase 40 zero-emission buses instead of 59 diesel hybrid buses.

Reason for Proposed Change

AC Transit does not wish to purchase any more hybrid buses going forward as the fleet will be transitioning into a zero emission fleet. Combining the SB1 grant with the TIRCP grant will enable us to purchase a sizeable zero emission fleet and infrastructure to get a headstart on this transition.

If proposed change will delay one or more components, clearly explain 1) reason the delay, 2) cost increase related to the delay, and 3) how cost increase will be funded

A project to acquire 40 zero-emission buses requires very detailed facilities and service planning and consider several operational options including which zero emission technology would work best for our service needs.
 There are no specific cost increases due to the delay, cost increases are related to change in scope items.
 Cost increases will be funded by FTA formula funds and other regional grant funds.

0	ther	Sign	ificant	Inf	ormat	tion

SECTION 2 - For SB1 Projects Only

Project Amendment Request (Please follow the individual SB1 program guidelines for specific criteria)

SECTION 3 - All Projects

Approvals

I hereby certify that the above information is complete and accurate and all approvals have been obtained for the processing of this amendment request.*

Name (Print or Type)	Signature	Title	Date
Eve Ng		Capital Planning and Grants	3/16/2020
	Eve Ng	Manager	

Attachments

- 1) Concurrence from Implementing Agency and/or Regional Transportation Planning Agency
- 2) Project Location Map

Local Partnership Program Benefits Forms

roject Information					
Project Title:	Purchase Zero Emission Buses - Phase 2	Date:	5/1/2020		
Project Identifier (EA. PPNO, etc):					

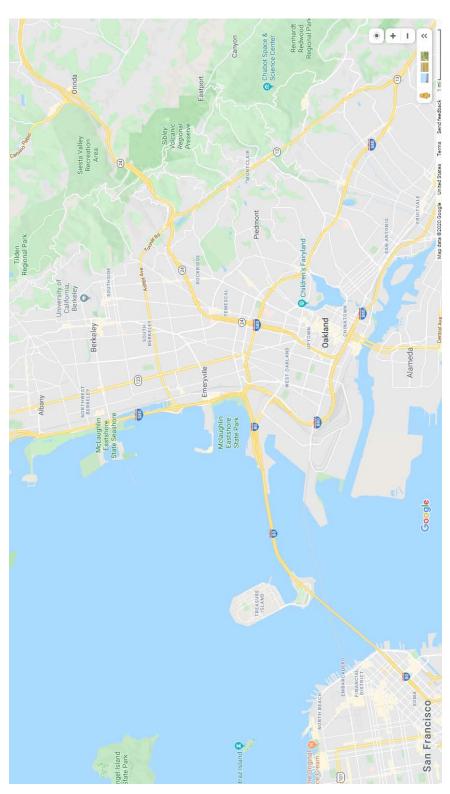
Contact Information			
Nominating Agency:	Alameda-Contra Costa Transit Agency	Agency Completing Form:	Alameda-Contra Costa Transit Agency
Contact Person: Evelyn Ng	Phone: 510 891 5405	Contact Person: Evelyn Ng	Phone: 510 891 5405
Email Address: eng@actransit.org		Email Address: eng@actransit.c	ora

LPP Indicator	Suggested Measures/Outcomes	Unit	Current	Proje	cted		
LIT indicator		Onit	Guiteiit				
		_		Outcome	Year		
	Average Peak Period Vehicle Trips	Time					
	Average Daily Vehicle Trips (ADT)	Each					
	Reduction in Daily Vehicle Hours of Delay	Hours					
	Daily VMT per capita	Each					
	Average Peak Period Vehicle Trips Multiplied by the Occupancy Rate	Each					
	Average Daily Vehicle Trips Multiplied by the Occupancy Rate	Each					
	Passengers per Vehicle Revenue Hour	Hours					
Throughput	Passengers per Vehicle Revenue Mile	Miles					
	Passenger Mile per Train Mile (Intercity Rail)	Miles					
	Boardings per capita	Each					
	Average Daily Passengers	Each	13,503	14,798	2023		
	In the space below, qualitatively explain the assumptions and methodologies used for and why other suggested measure(s) were not used.	r proposed throughput outcom	es. If another measure(s) is	s entered under "Other", de	escribe the meas		
	Current passengers based on current ridership. Projected ridership adds 2% incre	ease per year over current ride 2023.	rship, plus average Transb	ay ridership for 5 additiona	ıl expansion buse		
	Fatalities per Vehicle Miles Traveled (VMT) and per capita	Each					
	Fatal Collisions per VMT and per capita	Each					
	Injury Collisions per VMT and per capita	Each					
Safety	Other						
	In the space below, qualitatively explain the assumptions and methodologies used for proposed safety outcomes. If another measure(s) is entered under "Other", describe the measure and why other suggested measure(s) were not used.						
	Percentage of population within 1/2 mile of a rail station or bus route.	Percent					
	Average travel time to jobs or school.	Time					
	Other						
Accessibility	In the space below, qualitatively explain the assumptions and methodologies used fo and why other suggested measure(s) were not used.	r proposed accessibility outcor	nes. If another measure(s)	is entered under "Other", (describe the mea		
	Jobs created	Each					
	Benefit/Cost Ratio	Ratio					
	Other						
conomic Development	In the space below, qualitatively explain the assumptions and methodologies used for measure and why other suggested measure(s) were not used.	I r proposed economic developr	nent outcomes. If another r	I neasure(s) is entered unde	er "Other", descri		

Local Partnership Program Benefits Forms

	Reduction in Particulate Matter (PM2.5)	Tons per year	0.11	0				
	Reduction in Particulate Matter (PM10)	Tons per year	0.11	0				
	Reduction in Carbon Dioxide (CO2)	Tons per year	4791	0	2023			
	Reduction in Volatile Organize Compounds (VOC)	Tons per year						
Air Quality and Greenhouse Gas Reductions	Reduction in Sulphur Oxides (SOx)	Tons per year						
Guo Roudottollo	Reduction in Carbon Monoxide (CO)	Tons per year	26.5	0				
	Reduction in Nitrogen Oxide (NOx)	Tons per year	13.4	0				
	In the space below, qualitatively explain the assumptions and methodologies used for	r proposed emissions reduction	n outcomes.					
	For the proposed project, the reduction in particulate matter and NOx emissions was active 40-foot diesel buses in the existing AC Transit fleet were delivered from 2003 to for a model year 2005 urban transit bus. It was assumed each bus travels approximate	through 2005. Assuming the ne	ew BEBs or FCEBs would	replace older model year				
	Pavement lane miles	Miles						
	Condition of pavement - percentage	Percent						
	Condition of bridge - percentage	Percent						
System Preservation	Replacement of end-of-life buses	Each	40	40				
	In the space below, qualitatively explain the assumptions and methodologies used for proposed System Preservation outcomes. If another measure(s) is entered under "Other", describe the measure and why other suggested measure(s) were not used.							
	This project purchases brand new zero emission	buses which replace diesel bu	ses that have reached er	nd of useful life.				
	Travel Time Variability (buffer index)	Time						
	Daily vehicle hours of delay per capita	Hours						
	Daily congested highway VMT per capita	Each						
Reliability	Other							
	In the space below, qualitatively explain the assumptions and methodologies used for proposed Reliability outcomes. If another measure(s) is entered under "Other", describe the measure and why other suggested measure(s) were not used.							
	, ,,							
	Passenger Hours of Delay / Year	Hours						
	Average Peak Period Travel Time	Time						
	Average Non-Peak Period Travel Time	Time						
Mobility	Other	A A A A A A A A A A A A A A A A A A A						
	In the space below, qualitatively explain the assumptions and methodologies used for why other suggested measure(s) were not used.	r proposed Mobility outcomes.	ir another measure(s) is e	entered under "Other", de	escribe the measure and			

Project Report


Alameda-Contra Costa Transit District

Purchase Zero-emission Buses Phase 2

PROJECT APPROVED by

Alameda-Contra Costa Transit District Board of Directors on February 26, 2020

Vicinity Map

1. INTRODUCTION

Original Project Title: Purchase 59 Hybrid Buses

New Project Title: Purchase Zero-Emission Buses Phase 2

2. BACKGROUND

Originally the project was adopted into the 2018 LPP Competitive Program to purchase 59 hybrid buses. However, in May 2018 we had an opportunity to leverage the SB1 funds to enhance our TIRCP-funded zero-emissions bus purchase project. In essence, we are combining our SB1 and TIRCP grant awards into a single project to acquire 40 zero-emission buses. This presented a great opportunity for both meeting the state's objectives for innovative clean transit and for our agency to become a leader in zero-emission bus technology as we convert our bus fleet into a zero-emission fleet. Overall the greenhouse gas emissions reduction from 40 zero-emission buses will be greater than for 59 diesel hybrid buses.

Original Project Scope:

This project is for the purchase of up to 59 new 40-foot hybrid diesel-electric buses equipped with realtime bus dispatch and tracking systems, electronic and cash fare collection, and bike racks to replace existing diesel buses that are due for retirement from fleet.

New Project Scope:

The Alameda-Contra Costa Transit District (AC Transit) is planning to purchase 40 zero-emission buses. This project will procure 40 replacement zero-emission buses. The project will be carried out in these phases:

Phase 1. Planning for facilities and service planning.

This phase included preliminary engineering and planning to determine the options for bus technology types and readiness of AC Transit's bus yards to install charging infrastructure. It also produced preliminary costs and schedule for the project. This phase was completed in March 2020.

Phase 2. Purchase of 40 replacement buses (20 fuel cell and 20 battery electric).

All buses purchased will be equipped with real-time bus dispatch and tracking systems, electronic and cash fare collection, traffic signal priority systems and bike racks. The SB1 Competitive funds will be used for Phase 2.

3. PURPOSE AND NEED

Original Project:

The purpose of purchasing up to 59 new hybrid buses is to replace buses that are due for retirement at the end of their 12-year useful life. With buses retiring, there is a need to purchase new buses to replace them in order to maintain fleet size and service levels. Changing the bus propulsion method from diesel to diesel-electric hybrid will reduce emissions and improve fuel economy.

New Project:

The purpose of the project is to purchase 40 replacement zero-emission buses.

AC Transit has several diesel buses that have reached end of useful life and need to be replaced. With buses retiring, there is a need to purchase new buses to replace them in order to maintain fleet size and service levels.

The 40 Zero-Emission Bus Project will be the largest ZEB deployment for AC Transit that will involve both electric and hydrogen technologies. It will provide much needed and valuable information to further assess the viability of ZEBs on a larger scale, and will allow the District to continue to deploy zero-emission buses in preparation for compliance with the California Air Resources Board (CARB) Innovative Clean Transit (ICT) Regulation. CARB has a target of having all transit buses in the state be zero-emission by 2040, which would mean all bus purchases by 2028 need to be zero-emission.

4. FUNDING, PROGRAMMING AND ESTIMATE

Original Project:

The cost estimate for a 40ft hybrid electric bus is approximately \$800,000 per bus. Additional funds required for the project will come from a mix Federal Transit Administration 5307 and 5339 funds and regional bridge toll funds (AB664 and BATA) as stated in the Metropolitan Transportation Commission's FY2017-18 to FY2019-20 Transit Capital Priorities Program. AC Transit will apply for other sources of matching funds or provide District funds to cover any additional costs. Total project cost for 59 buses is approximately \$47.2 million.

New Project:

Forty zero-emission buses will replace diesel buses that are due for retirement. The main sources of funding are from TIRCP and SB1 grant funds. The project will also

use FTA formula funds (a mix Federal Transit Administration 5307 and 5339 funds) and regional bridge toll funds (AB664 and BATA).

The funding in the table below indicates the funding sources for Phase 2 of the project, which is to purchase 40 zero-emission buses.

Project Items	TYPE OF FUNDS			Total
(in \$millions)	TIRCP	SB1	FTA / MTC	
Bus purchase	\$5.0	\$15.0	\$25.0	\$45.0
Total	\$5.0	\$15.0	\$25.0	\$45.0

Programming

Phase 1: PA & ED \$1,006,000 Phase 2: Bus purchase \$45,000,000

Fund Source		Fiscal Year Estimate						
20.XX.###.###	Prior	18/19	19/20	20/21	21/22	22/23		Total
Component		In thousands of dollars (\$1,000)						
PA&ED	1,006							1,006
Bus purchase		15,000		30,000				45,000
Total	1,006	15,000		30,000				46,006

6. PROEJCT SCHEDULE

Original Project:

Confirmation of vehicle specifications and purchasing process – October 2018
Purchase contract issued – December 2018
Delivery of vehicles – June 2020
Vehicles put into service – July 2020

New Project:

Phase 1 of the project will be completed by March 2020.

Phase 2 is beginning in June 2020 with requesting permission from AC Transit Board of Directors to purchase 40 zero-emission vehicles, followed by negotiation and award of contracts to bus manufacturers between July – December 2020.

The table below indicates anticipated dates for start and end of each milestone.

Phase	Project Milestones	Milestone Date Start	Milestone Date End
1	PA & ED – Preliminary engineering and environmental clearance	02/28/2020	02/28/2020
	Contract award of 40 replacement zero-emission buses (through state contracts)	07/01/2020	12/31/2020
2	Delivery of buses	06/01/2022	12/31/2022
_	Testing and acceptance	01/01/2023	06/01/2023
	Close out	06/01/2023	03/01/2024

7. RISKS

Risks for this project are minimal. Bus prices are predetermined as they are currently published by California and Virginia state contracts.

8. PROJECT BENEFITS

A. Reduction of Greenhouse Gas Emissions

Original Project:

Purchasing 59 hybrid buses to replace diesel buses will have a significant impact on emissions. According to a 2008 study done by the National Renewable Energy Lab, hybrid electric vehicles have approximately 43% better fuel economy and lower emissions of CO, CO2, NOx PM10 etc. In addition regenerative braking reduces costs to the brake system (NREL 2008, NREL/CP-540-42534).

New Project:

The environmental benefits of replacing 40 diesel buses with 40 zero-emission buses are significant, estimated at an 97% reduction in particulate matter PM2.5, and 100% reduction in other greenhouse gases. In addition, 40 zero-emission buses also save much more in terms of greenhouse gas production, measured by grams of CO2e per mile. The 40 zero-emission buses would produce only 33% of what 59 diesel-hybrid buses would emit, based on 1,078 grams of CO2e per mile for a zero-emission bus, compared to 2,212 grams for a diesel-hybrid bus.

Significant amounts of greenhouse gases will be reduced by purchasing 40 zero-emission buses instead of 59 diesel hybrids. The environmental benefits of purchasing 40 zero-emission buses instead of 59 diesel hybrid buses are compared in this table:

Greenhouse Gas Type	59 Diesel Hybrid	40 Zero Emission	Percentage
	Buses	Buses	reduction
PM 2.5 (metric tons)	0.1217	0.0024	97%
PM10 (metric tons)	0.1217	0	100%
CO2 (metric tons)	3624.9600	0	100%
CO (metric tons)	29.3156	0	100%
NOx (metric tons)	14.9344	0	100%
CO2e per mile	125,198	43,120	50%

B. Disadvantaged Communities

For both the original and new project, the benefits for Disadvantaged Communities is the same as the buses would have been put into service throughout our service area.

Within AC Transit's service area, approximately fifty-four percent (54%) of the total miles driven are in area codes that have Disadvantaged Communities (DACs) within them. In addition, approximately forty-onepercent (41%) of the total stops of all local bus routes are within half a mile from a disadvantaged community. More than half of these routes have DACs within 50% of more of their total route. More than 60% of our service area encompasses Low-income Communities as defined by AB1550, and the majority of our service routes travel through these communities. (See attached Map of AC Transit Routeswithin Disadvantaged Communities and Low-Income Communities).

These new buses will be put in service throughout AC Transit's service area, and will therefore serve a great number of DACs as well as Low-income Communities.

9. ATTACHMENTS

- A. Approval from AC Transit Board of Directors February 26, 2020
- B. Map of Low-Income Communities and Disadvantaged Communities AC Transit Routes and

ALAMEDA-CONTRA COSTA TRANSIT DISTRICT

Master Minute Order

File Number: 19-340a

Report ID: 19-340a Type: Regular - Planning Status: Agenda Ready

Agenda Meeting Body: Board of Directors - Section: Regular Meeting

Report Created: 01/22/2020

Final Action:

Recommended Action: Consider the following actions associated with the 45 Zero Emission Bus (ZEB) Preliminary Design and Implementation Plan Project:

- Approve a mix of 45 zero emission buses by quantity and by type; and
- Authorize the release of solicitations associated with modifications to District facilities to accommodate an increase in the size of the battery electric bus fleet, including:
 - A Request for Qualifications (RFQ) for Design and Construction Administration (CA) services for the infrastructure required to support the expanded battery electric bus fleet;
 - 2) A Request for Qualifications (RFQ) for Construction Management (CM) services for the infrastructure required to support the expanded battery electric bus fleet; and
 - 3) An Invitation for Bid (IFB) for Construction Services to construct infrastructure required to support the expanded battery electric bus fleet.

Meeting Date: 02/26/2020

Agenda Number: 7.D.

Sponsors: Enactment Date:

Attachments: STAFF REPORT, Att.1. Presentation Enactment Number:

Hearing Date: Effective Date:

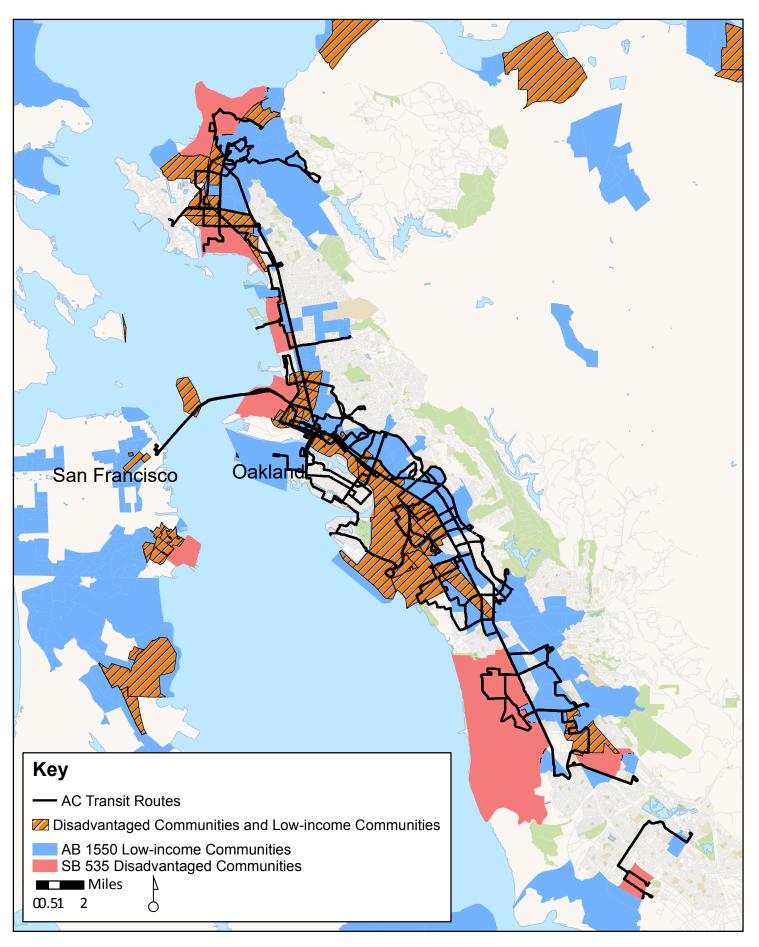
History of Legislative File

Acting Body: Date: Action: Sent To: Due Date: Return Result: Date:

Board of Directors - Regular Meeting

02/26/2020 Approved

Pass


Action Text:

MOTION: PEEPLES/WALLACE to approve Option D to Equalize Quantities of Fuel Cell Electric Buses and Battery Electric Buses; and authorize the release of solicitations associated with modifications to District facilities to accommodate an increase in the size of the battery electric bus fleet, including: 1) a Request for Qualifications (RFQ) for Design and Construction Administration (CA) services for the infrastructure required to support the expanded battery electric bus fleet; 2) a Request for Qualifications (RFQ) for Construction Management (CM) services for the infrastructure required to

the infrastructure required to support the expanded battery electric bus fleet; 2) a Request for Qualifications (RFQ) for Construction Management (CM) services for the infrastructure required to support the expanded battery electric bus fleet; and 3) an Invitation for Bid (IFB) for Construction Services to construct infrastructure required to support the expanded battery electric bus fleet. The motion carried by the following vote:

Ayes: 7 President Wallace, Vice President Ortiz, Director Harper, Director Williams, Director Shaw, Director Peeples, Director Young

SB 535 Disadvantaged Communities and AB 1550 Low-income Communities Served by AC Transit

Alameda-Contra Costa Transit District

January 25, 2018

Susan Bransen, Executive Director California Transportation Commission 1120 N Street, MS-52 P.O. Box 942873 Sacramento, CA 95814

Local Partnership Program (Competitive Program)

Dear Ms. Bransen,

With this letter, I am authorizing and approving AC Transit's application for the Senate Bill 1 Local Partnership Program (LPP) Competitive Program to secure funding the purchase of 59 hybrid buses to replace retiring buses in our fleet.

These buses are needed in order to maintain our fleet and service levels in the East Bay which continues a fast growth rate in terms of jobs and population. Changing the bus propulsion method from diesel to diesel-electric hybrid will reduce emissions and improve fuel economy, which would be greatly beneficial to the environment. This, in particular, would have a very positive impact on the many Disadvantaged Communities that are within our service area.

We estimate that the project will cost approximately \$47.2 million in total, and are applying for \$15 million in LPP Competitive funds to assist in completing the project. We expect to put the new buses into service by 2020.

We hope you will consider our application for the Local Partnership Program funding favorably as it will support critically needed transit service in the East Bay.

Sincerely,

Michael Hursh General Manager

ALAMEDA-CONTRA COSTA TRANSIT DISTRICT

APPLICATION FOR LOCAL PARTNERSHIP PROGRAM (COMPETITIVE)

JANUARY 30, 2018

I. PROJECT OVERVIEW

1. PROJECT TITLE

Purchase Hybrid Buses

PROJECT DESCPTION

This project is for the purchase of up to 59 new 40-foot hybrid diesel-electric buses equipped with real-time bus dispatch and tracking systems, electronic and cash fare collection, and bike racks to replace existing diesel buses that are due for retirement from fleet.

3. PROJECT SCOPE

The project is for the purchase of up to 59 new 40-foot hybrid electric buses equipped with real-time bus dispatch and tracking systems, electronic and cash fare collection, security cameras, and bike racks. The project is scalable downward – if AC Transit is awarded less than the requested amount, the number of hybrid buses purchased will scale down accordingly.

4. PURPOSE AND NEED

The purpose of purchasing up to 59 new hybrid buses is to replace buses that are due for retirement at the end of their 12-year useful life. With buses retiring, there is a need to purchase new buses to replace them in order to maintain fleet size and service levels. Changing the bus propulsion method from diesel to diesel-electric hybrid will reduce emissions and improve fuel economy.

- 5. REVERSIBLE LANE CONFIRMATION Not Applicable
- 6. PRR FORM (ATTACHED)

II. PROJECT DELIVERY PLAN

1. SCHEDULE

Confirmation of vehicle specifications and purchasing process – October 2018

Purchase contract issued - December 2018

Delivery of vehicles – June 2020

Vehicles put into service – July 2020

DELIVERY RISKS

There are few delivery risks to this project as it will be a standard bus purchase project that involves purchase order, delivery, testing and putting the new buses into service. AC Transit currently has several hybrid buses in its fleet and is therefore familiar with the mechanics, maintenance and operations of these buses. Additional funding for the project will come from the Federal Transit Administration and other regional sources. This project is listed in the Metropolitan Transportation Commission's FY17-FY20 Transit Capital Priorities Program.

3. COST ESTIMATE

The cost estimate for a 40ft hybrid electric bus is approximately \$800,000 per bus. Additional funds required for the project will come from a mix Federal Transit Administration 5307 and 5339 funds and regional bridge toll funds (AB664 and BATA) as stated in the Metropolitan Transportation Commission's FY2017-18 to FY2019-20 Transit Capital Priorities Program. AC Transit will apply for other sources of matching funds or provide District funds to cover any additional costs.

Total project cost for 59 buses - \$47.2 million

4. FINANCIAL CAPACITY

If awarded, AC Transit will complete this project as described. If less than the full request is awarded, then the number of hybrid buses purchased (instead of standard diesel buses) will be reduced accordingly. Cost overruns will be covered by other sources of funding or by utilizing District funds.

III. PROJECT BENEFITS

1. EVALUATION CRITERIA

AC Transit is requesting \$15 million in LPP competitive funds, which represents 32% of the overall project costs. An additional 52% of the funds for the project are secured from federal and regional grants and the remaining funds may be secured from other external sources or from District funds. This project is already programmed in the Metropolitan Transportation Commission's Transit Capital Priorities FY2018-FY2020 program and is therefore scheduled to be completed in the next three years.

We do not foresee any obstructions to beginning and completing this project as it will be a standard bus procurement. This project can commence as soon as funding is available.

This project will purchase up to 59 hybrid buses to replace regular diesel buses, which will lead to significant improvement in air quality. Within our Metropolitan Planning Organization, the Sustainable Communities Strategy is explained in the Plan Bay Area planning document. Purchasing new buses meets the maintenance and state of good repair goal of Plan Bay Area (Plan Bay Area 2040 performance target 13). New buses help maintain on-time service, which is the largest factor in rider satisfaction (Plan Bay Area 2040 performance target 11). Reduced emissions by replacing diesel buses with hybrid electric buses will greatly decrease greenhouse gas and other emissions targets (Plan Bay Area 2040 performance targets 1 and 3).

2. EMISSIONS IMPACT

Purchasing 59 hybrid buses to replace diesel buses will have a significant impact on emissions. According to a 2008 study done by the National Renewable Energy Lab, hybrid electric vehicles have approximately 43% better fuel economy and lower emissions of CO, CO2, NOx PM10 etc. In addition regenerative braking reduces costs to the brake system (NREL 2008, NREL/CP-540-42534).

According to a study by Hallmark, Wang and Sperry (2013), where they compared emissions between hybrid and regular diesel buses, the reduction in various greenhouse gases were significant, as summarized below:

Type of Pollutant	Reduction in Emissions for Hybrid compared to Regular Diesel
CO	24% to 40%
CO ₂	32% to 98%
NOx	18% to 44%
HC	28% to 88%
PM	51% to 90%

Source: Hallmark, Shauna L., Wang, Bo & Sperry, Robert "Comparison of on-road emissions for hybrid and regular transit buses." Journal of the Air & Waste Management Association Vol. 63, Issue 10, 2013.

The SB1 Emissions Calculator Workbook is attached. The California Life Cycle Benefit/Cost Analysis Model Workbook is not applicable for our project.

BENEFIT-COST ANALYSIS

It is difficult to quantify the exact benefit-cost analysis for this project without real time testing to compare the performance of vehicles that were retired and new vehicles that replaced them. Overall, though the purchase price of a hybrid vehicle is approximately 50% higher than that of regular diesel, the savings over the 12 year life of the transit bus will outweigh the upfront cost. These savings would include fuel costs, costs of engine parts, braking and propulsion systems.

IV. COMMUNITY IMPACT

1. COMMUNITY INVOLVEMENT

AC Transit is the third-largest public bus system in California and the largest bus-only public transit system in the United States, serving 13 densely populated cities and adjacent unincorporated areas in Alameda and Contra Costa counties., including the Cities of Oakland, Fremont, Berkeley, Richmond, Hayward, San Leandro, Alameda, Albany, El Cerrito, Emeryville, Newark, Piedmont, and San Pablo. AC Transit provides local, rapid transit, and Transbay commuter service to San Francisco, San Mateo, and Santa Clara counties traversing the San Francisco-Oakland Bay, San Mateo-Hayward, and Dumbarton Bridges.

Letters of support from the following organizations are attached:

- a. City of Alameda
- b. City of Berkeley
- c. City of Newark
- d. City of Oakland
- e. City of San Leandro

2. COMMUNITY BENEFITS AND IMPACT

i. Disadvantaged Communities

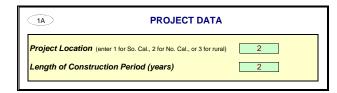
Within AC Transit's service area, approximately fifty-four percent (54%) of the total miles driven are in area codes that have Disadvantaged Communities (DACs) within them. In addition, approximately forty-one percent (41%) of the total stops of all local bus routes are within half a mile from a disadvantaged community. More than half of these routes have DACs within 50% of more of their total route.

More than 60% of our service area encompasses Low-income Communities as defined by AB1550, and the majority of our service routes travel through these communities. (See Maps of AC Transit Routes within Disadvantaged Communities and Low-income Communities)

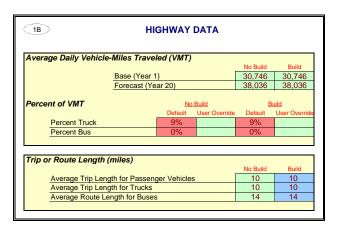
These new hybrid buses will be put in service throughout AC Transit's service area, and will therefore serve a great number of DACs as well as Low-income Communities.

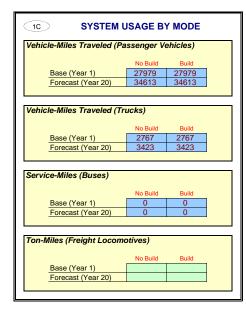
ii. Benefits and Impacts to Communities in General

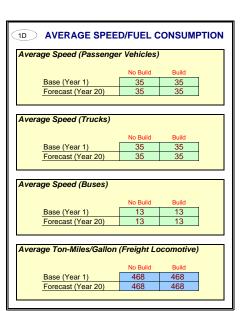
There will be no impact to the community as buses will continue to operate on regular schedules. New buses will replace retiring buses as and when they are delivered and prepared to go into service.


iii. Consistency with RTP/SCS

In terms of land use and housing goals, AC Transit service is focused on existing urban areas and Priority Development Areas in Western Alameda and Contra Costa Counties. The renewal of our infrastructure, facilities, and vehicles, supports the regional Planned Bay Area 2040 goal of focused growth in existing communities along the existing transportation network.


Purchasing new buses also meets the maintenance and state of good repair goal of Planned Bay Area (Planned Bay Area 2040 performance target 13). New buses help maintain on-time service, which is the largest factor in rider satisfaction (Planned Bay Area 2040 performance target 11). Reduced emissions by replacing diesel buses with hybrid electric buses will greatly decrease greenhouse gas and other emissions targets (Planned Bay Area 2040 performance targets 1 and 3).


District:	HQ		
		EA:	
PROJECT:	Purchase Hybrid Buses	PPNO:	


Purchase Hybrid Buses to Replace Retiring Buses

PROJECT DESCRIPTION:

District: HQ

PROJECT: Purchase Hybrid Buses

ΞA:	
PPNO:	

2 INVESTMENT ANALYSIS SUMMARY RESULTS									
Short Tons Value (mil. \$)									
	Total Over	Average	Total Over	Average					
EMISSIONS REDUCTION	20 Years	Annual	20 Years	Annual					
CO Emissions Saved	0	0	\$ -	\$ -					
CO ₂ Emissions Saved	0	0	\$ -	\$ -					
NO _X Emissions Saved	0	0	\$ -	\$ -					
PM ₁₀ Emissions Saved	0	0	\$ -	\$ -					
PM _{2.5} Emissions Saved	0	0		,					
SO _X Emissions Saved	0	0	\$ -	\$ -					
VOC Emissions Saved	0	0	\$ -	\$ -					

(B)

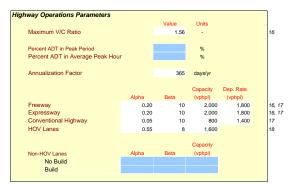
SUMMARY OF EMISSION REDUCTION BENEFITS

	TONS EMISSIONS SAVED (tons/yr)								
Year	СО	CO ₂	NO _X	PM ₁₀	SO _x	voc	PM _{2.5}		
1	0.000	0	0.000	0	0	0	0		
20	0.000	0	0.000	0	0	0	0		
2	0.000	0	0.000	0	0	0	0		
3	0.000	0	0.000	0	0	0	0		
4	0.000	0	0.000	0	0	0	0		
5	0.000	0	0.000	0	0	0	0		
6	0.000	0	0.000	0	0	0	0		
7	0.000	0	0.000	0	0	0	0		
8	0.000	0	0.000	0	0	0	0		
9	0.000	0	0.000	0	0	0	0		
10	0.000	0	0.000	0	0	0	0		
11	0.000	0	0.000	0	0	0	0		
12	0.000	0	0.000	0	0	0	0		
13	0.000	0	0.000	0	0	0	0		
14	0.000	0	0.000	0	0	0	0		
15	0.000	0	0.000	0	0	0	0		
16	0.000	0	0.000	0	0	0	0		
17	0.000	0	0.000	0	0	0	0		
18	0.000	0	0.000	0	0	0	0		
19	0.000	0	0.000	0	0	0	0		
Total	0.000	0	0.000	0	0	0	0		

SUMMARY OF EMISSION REDUCTION BENEFITS

		DOLLARS EMISSIONS SAVED (PV \$/yr)									
CO ₂	NO _X	PM ₁₀	SO _X	VOC							
0	0	0	0	0							
0	0	0	0	0							
				0							
			-	0							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
	-			0							
				0							
				0							
				0							
				0							
0	0	0	0	0							
Λ.	0	0	0	0							
	CO ₂ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0							

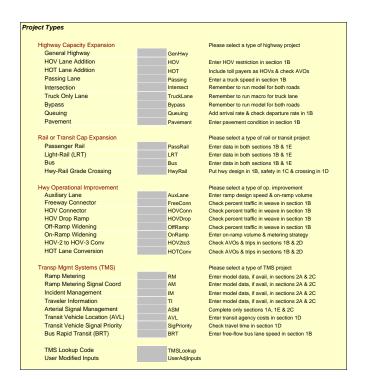
Parameters


This page contains all economic values and rate tables.

To update economic values automatically, change "Economic Update Factor."

rel Time Parameters				
		Value	Units	
Statewide Average Hourly Wage	\$	27.34	\$/hr	
Heavy and Light Truck Drivers				
Average Hourly Wage	s	20.44	\$/hr	
Benefits and Costs	s	10.97	\$/hr	
Benefits and Costs	3	10.97	ф/П	
Value of Time				
Automobile	\$	13.65	\$/hr/per	
Truck	\$	31.40	\$/hr/veh	
Auto & Truck Composite	\$	18.95	\$/hr/veh	
Transit	\$	13.65	\$/hr/per	
Out-of-Vehicle Travel		2	times	
Incident-Related Travel		3	times	
Travel Time Uprater		0.0%	annual incr	
icle Operating Cost Parameters				
Average Fuel Price				
Automobile (regular unleaded)	\$	3.18	\$/gal	
Truck (diesel)	\$	3.00	\$/gal	
Sales and Fuel Taxes				
State Sales Tax (gasoline)		2.25%		
State Sales Tax (diesel)		7.50%		
Average Local Sales Tax		0.50%	%	
Federal Fuel Excise Tax (gasoline)	\$	0.184	\$/gal	
Federal Fuel Excise Tax (diesel)	\$	0.244	\$/gal	
State Fuel Excise Tax (gasoline)	\$	0.278	\$/gal	
State Fuel Excise Tax (diesel)	\$	0.160	\$/gal	
Fuel Cost Per Gallon (Exclude Taxes)				
Automobile	\$	2.65	\$/gal	
Truck	\$	2.40	\$/gal	
Non-Fuel Cost Per Mile				
Automobile	s	0.040	\$/mi	
Truck	S	0.313	\$/mi \$/mi	
Truck	\$	0.429	\$/mi	
Idling Speed for Op. Costs and Emissions		5	mph	
ident Cost Parameters				
Cost of a Fatality	\$	9,800,000	\$/event	
Cost of an Injury				
Cost of an Injury Level A (Severe)	\$	466,400	\$/event	
Level B (Moderate)	\$	127,000	\$/event \$/event	
Level C (Minor)	\$	64,900	\$/event	
Cost of Property Damage	\$	2,700	\$/event	
One of the bound And dead				
Cost of Highway Accident Fatal Accident	S	10,800,000	\$/accident	
Injury Accident	\$	148,800		
PDO Accident	\$	9,700		
Average Cost	S	185,600		
		100,000	graceident	
Arrolago occi				
Statewide Highway Accident Rates				
Statewide Highway Accident Rates Fatal Accident		0.006	per mil veh-mi	
Statewide Highway Accident Rates Fatal Accident Injury Accident		0.29	per mil veh-mi	
Statewide Highway Accident Rates Fatal Accident		0.29 0.55		

Sources: 1) Office of Management and Budget (OMB), 2) Review of OMB and State
Treasurer's Office data, 3] Bureau of Labor Statistics (BLS) CES, 4) BLS Employment
Cost Index, 9) USDOT Department Guidance, 6) California Department of Transportation
TSI and Traffic Operations, 7) IDAS model, 8) AAA Daily Fuel Gauge Report, 9) California
Beard of Equalization, 10) AAA Vour Driving Costs, 11) American Transportation Research
Institute, 12) USDOT VSL, 13) NHTSA, 14) TASAS summary 2013, 15) TASAS summary 2009



Sources: 16) Highway Capacity Manual, 17) NCHRP 387, 18) PeMS data

e Transportation Parameters			
General Travel Activity Characteristics Parameters	Va	lue	Units
Cycling Days per Year		365	days
Walking Days per Year		365	
School Days per Year			days
50.100.15dy5 pt. 10d.		100	dayo
Vehicle Statistics			
Average Vehicle Speed		25	mph
Average Vehicle Occupancy		1.25	persons / veh
Active Transportation User Characteristics			
Average Cycling Speed		11.80	mph
Average Walking Speed		3.00	mph
Number of Unlinked Cycling Trips per Day		1.93	trips
Number of Unlinked Pedestrian Trips per Day		2.38	
Diversion of Cyclists from Personal Vehicles		50%	assumption
Diversion of Pedestrians from Personal Vehicles			assumption
Value of Travel Time			
Adults	\$	13.65	\$/hr/per
Children	s S		\$/hr/per
Cilidieii	a a	13.03	ф/пі/реі
Cycling Journey Quality - Facility Preference Factors as Function of Distance by Facility Class			
Class I		0.57	-
Class II		0.49	
Class III		0.92	
Class IV		0.49	-
Note: Class IV assumed to be the same as Class II			
Walking Journey Quality Values per Mile by Amentity			
Street Lighting		\$0,110	\$/mi
Curb Level		\$0.078	\$/mi
Crowding		\$0.055	
Pavement Evenness		\$0.026	\$/mi
Information Panels		\$0.026	\$/mi
Benches		\$0.017	\$/mi
Directional Signage		\$0.017	\$/mi
Health (Absenteeism Reduction)			
Average Absence of Employees		3.60	days/yr
Percentage Covered by Short-Term Sick Leave		95%	
Percentage of Sick Days Reduced When Active at Least 30 Minutes per Day		6%	%
Health (Mortality Reduction)			
Percentage of Cyclists Aged 16-64		73.4%	9/-
Percentage of Pedestrians Aged 16-74		80.7%	
i dicentage of i edestitatis Aged 10-74		00.7%	70
Percentage Reduction in Mortality per 365 Annual Cycling Miles		4.5%	
		9.0%	%
Percentage Reduction in Mortality per 365 Annual Walking Miles			
Percentage Reduction in Mortality per 365 Annual Walking Miles Morality Rate - All Causes (Aged 20-64)		266	#/100,000 people

Sources: 19) 2000-2001 California Statewide Travel Survey, 20) Hood et al., 2011, 21) WHO HEAT Model, 2012, 22) Heuman et al., 2005, 23) CDC, 2007, 24) UK TAG, 2014, 25) WHO, 2003, 26) 2010-2012 California Household Transporation Survey, 27) WHO HEAT Model, 2016, 28) California Department of Health, 2010-2014 Death Rates, Table 5.2

Travel Demand Tables

DEMAND FOR TRAVEL IN PEAK PERIOD (percent of total daily travel)						
1	8.5%	8.5%	8.5%	8.5%	8.5%	8.5%
2	16.8%	16.8%	16.8%	16.8%	16.8%	16.8%
3	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
4	32.8%	32.8%	32.8%	32.8%	32.8%	32.8%
5	40.3%	40.3%	40.3%	40.3%	40.3%	40.3%
6	47.4%	47.4%	47.4%	47.4%	47.4%	47.4%
7	54.2%	54.2%	54.2%	54.2%	54.2%	54.2%
8	60.8%	60.8%	60.8%	60.8%	60.8%	60.8%
9	67.1%	67.1%	67.1%	67.1%	67.1%	67.1%
10	73.4%	73.4%	73.4%	73.4%	73.4%	73.4%
11	79.0%	79.0%	79.0%	79.0%	79.0%	79.0%
12	84.3%	84.3%	84.3%	84.3%	84.3%	84.3%
13	88.6%	88.6%	88.6%	88.6%	88.6%	88.6%
14	91.6%	91.6%	91.6%	91.6%	91.6%	91.6%
15	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%
16	96.4%	96.4%	96.4%	96.4%	96.4%	96.4%
17	97.6%	97.6%	97.6%	97.6%	97.6%	97.6%
18	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%
19	99.1%	99.1%	99.1%	99.1%	99.1%	99.1%
20	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%
21	99.7%	99.7%	99.7%	99.7%	99.7%	99.7%
22	99.8%	99.8%	99.8%	99.8%	99.8%	99.8%
23	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%
24	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Source: California Department of Transportation, 2010-2012 California Household Travel Survey, Final Report Appendix, June 2013

AGE COHORTS FOR MORTALITY RISK REDUCTION (percent of population)							
Urban							
Mode	Age Cohort	South	North	Rural			
Cycling	Age 16-64	70.5%	73.4%	66.0%			
Walking	Age 16-74	76.2%	80.7%	70.0%			

AVERAGE DISTANCE PER ACTIVE TRANSPORTATION TRIP

		Url	Urban			
Mode	Age Cohort	South	North	Rural		
Cycling	Adults	1.83	1.85	2.91		
	Children <16	0.88	1.03	1.66		
Walking	Adults	0.52	0.66	0.29		
	Children <16	0.46	0.58	0.42		

TRIP PURPOSE FOR ACTIVE TRANSPORTATION TRIPS (percent of trips)

		Url	Urban		
Mode	Trip Purpose	South	North	Rural	
Cycling	Commuting	8%	11%	7%	
	Recreation	15%	13%	15%	
	Other Destination	77%	76%	78%	
Walking	Commuting	5%	9%	4%	
	Recreation	10%	10%	15%	
	Other Destination	85%	81%	81%	

Source: California Department of Transportation, 2010-2012 California Household Travel Survey database, 2012

Operating Cost Tables

FUEL CONSUMPTION RATES

(gal/veh-mi)
 Speed
 Auto*
 Truck

 5
 0.1024
 0.2112

 6
 0.0971
 0.2056

 7
 0.0919
 0.2000
 0.1944 0.0867 0.0815 0.0763 0.1888 0.1832 0.1707 0.1583 0.1459 0.0727 0.0727 0.0691 0.0656 0.0620 0.0584 0.0560 0.0536 0.1335 0.1211 0.1181 0.1150 0.1120 0.1089 0.1059 0.1011 0.0963 0.0916 0.0868 0.0821 0.0804 0.0513 0.0489 0.0465 0.0449 0.0433 0.0417 0.0401 0.0384 0.0374 0.0352 0.0771 0.0755 0.0738 0.0750 0.0341 0.0323 0.0323 0.0316 0.0310 0.0763 0.0774 0.0303 0.0296 0.0292 0.0786 0.0799 0.0796 0.0288 0.0794
0.0284 0.0792
0.0280 0.0780
0.0274 0.0780
0.0276 0.0788
0.0272 0.0804
0.0272 0.0804
0.0273 0.0804
0.0266 0.0828
0.0266 0.0820
0.0266 0.0824
0.0266 0.0824
0.0266 0.0824
0.0266 0.0824
0.0266 0.0824
0.0266 0.0826
0.0268 0.0826
0.0269 0.0826
0.0269 0.0826
0.0272 0.0834
0.0272 0.0834
0.0272 0.0830
0.0273 0.0830
0.0273 0.0830
0.0274 0.0850
0.0279 0.0756
0.0301 0.0756
0.0303 0.0756
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754
0.0303 0.0756
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754
0.0303 0.0754

* Includes motorcycles & motorhomes Note: Five mph is best estimate for idling

0.0350 0.0881 0.0356 0.0920

Source: California Air Resources Board, EMFAC2014, 2016 & 2036 average

Accident Tables

HIGHWAY INJURY SEVERITY FREQUENCY

Event	Urban	Suburban	Rural	Average
Severe Injury (A)	4.78%	4.78%	4.78%	4.78%
Other Visible Injury (B)	25.54%	25.54%	25.54%	25.54%
Complaint of Pain (C)	69.68%	69.68%	69.68%	69.68%

Source: 2013 SWITRS Annual Report, Table 8C

Accident Type
Fatal Accident

RATES FOR NON-HIGHWAY ACCIDENT EVENTS

Event	Pass Train	Light Rail	Bus	Freight Rail	
Fatality	0.0555	0.2480	0.0349	0.9917	
Injury	0.2519	3.9469	3.6535	7.7862	
All Accidents	0.2775	5.3817	2.6733	13.5424	

Sources: USDOT,Transportation Statistics Annual Report, Table 2-33, 2003 to 2012 average FRA, Office of Safety Analysis, Table 1.13, 2008 to 2017 YTD average.

NUMBER OF FATALITIES (events/accident) Urban Suburban Rural Average 1.11

NUMBER OF INJURIES (events/accident)

Accident Type	Urban	Suburban	Rural	Average
Fatal Accident	0.81	0.82	1.12	0.95
Injury Accident	1.44	1.43	1.50	1.44

NUMBER OF VEHICLES INVOLVED

Accident Type	Urban	Suburban	Rural	Average
Fatal Accident	1.51	1.69	1.58	1.63
Injury Accident	1.82	2.10	1.59	1.99
PDO Accident	1.80	2.03	1.59	1.96

DISTRIBUTION OF ACCIDENT TYPES (percent of accidents)

Accident Type	Urban	Suburban	Rural	Average
Fatal Accident	1.18%	0.45%	1.92%	0.71%
Injury Accident	34.93%	33.09%	38.25%	33.98%
PDO Accident	63.89%	66.45%	59.83%	65.31%

Source: California Department of Transportation, TASAS Unit, 2010 to 2013 average

COST OF HIGHWAY ACCIDENTS (\$/accident)						
Accident Type	Urban	Suburban	Rural	Average		
Fatal Accident	\$10,800,000	\$10,700,000	\$11,300,000	\$11,000,000		
	\$148,800	\$148,600	\$154,200	\$149,30		
Injury Accident						
Injury Accident PDO Accident	\$9,700	\$11,000	\$8,600	\$10,600		

Source: Combination of above four tables

COST OF NON-HIGHWAY ACCIDENT EVENTS (\$/event)

Event	Pass Train	Light Rail	Bus	Freight Rail
Fatality	\$9,800,000	\$9,800,000	\$9,800,000	\$9,800,000
Injury	\$180,500	\$180,500	\$180,500	\$180,500
Prop Damage	\$78,800	\$12,400	\$3,800	\$147,600

Sources: FTA, Transit Safety & Security Statistics, 2002 to 2011 average FRA, Office of Safety Analysis, Table 3.16, 2014 to 2016 average.

COSTS OF NON-HIGHWAY ACCIDENTS (\$/million veh-mi)

Value	Pass Train	Light Rail	Bus	Freight Rail
Cost	\$611,200	\$3,209,500	\$1,011,600	\$13,122,900

Source: Combination of above two tables

HIGHWAY-RAIL GRADE CROSSING INCIDENTS (units in table)

Value	Incident	Fatality	Injury
Total Events	799	94	515
Avg per Incident		0.1176	0.6446
Cost per Event		\$9,800,000	\$180,500

Source: FRA, Office of Safety Analysis, 5.10 - Hwy/Rail Incidents Summary Table, California, Motor Vehicles, Public Crossings, Jan 2007 to Dec 2016

PASSING LANE ACCIDENT REDUCTION FACTORS

Minimum ADT	Fatality	Injury	PDO
0	25.0%	69.4%	92.6%
5,000	19.2%	80.3%	96.5%
10,000	84.0%	57.7%	97.8%

Source: Taylor and Jain, 1991

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2016

Mode	Speed	со	CO ₂	NO _x	PM ₁₀	SO _x	VOC	PM _{2.5}
Auto	0 0	3.4104	81.98	0.2740	0.0028	0.0009	0.2826	0.0026
Auto	5	3.4104	1213.16	0.2740	0.0028		0.2826	0.0026
	5 6	3.6818	1213.16 1148.57			0.0122		0.0123
	-			0.3282	0.0123	0.0115	0.3105	
	7	3.3284	1083.98	0.3099	0.0113	0.0109	0.2824	0.0104
	8	3.1516	1019.40	0.2917	0.0103	0.0102	0.2543	0.0095
	9	2.9749	954.81	0.2734	0.0093	0.0096	0.2262	0.0086
	10	2.7982	890.22	0.2552	0.0083	0.0089	0.1982	0.0077
	11	2.7335	850.65	0.2497	0.0078	0.0085	0.1864	0.0072
	12	2.6688	811.08	0.2443	0.0072	0.0081	0.1747	0.0067
	13	2.6041	771.51	0.2389	0.0067	0.0077	0.1630	0.0062
	14	2.5395	731.95	0.2335	0.0062	0.0077	0.1512	0.0002
	15	2.4748	692.38	0.2381	0.0056	0.0070	0.1395	0.005
	16	2.4748	664.13	0.2251		0.0070	0.1314	0.0052
					0.0053			
	17	2.3450	635.88	0.2168	0.0050	0.0064	0.1232	0.0046
	18	2.2801	607.62	0.2112	0.0047	0.0061	0.1150	0.0043
	19	2.2153	579.37	0.2056	0.0044	0.0058	0.1069	0.0040
	20	2.1504	551.12	0.1999	0.0040	0.0055	0.0987	0.0037
	21	2.0928	532.04	0.1948	0.0038	0.0053	0.0934	0.003
	22	2.0353	512.95	0.1897	0.0036	0.0052	0.0881	0.0033
	23	1.9777	493.87	0.1846	0.0034	0.0050	0.0828	0.0031
	24	1.9202	474.78	0.1795	0.0032	0.0048	0.0775	0.0029
	25	1.8626	455.70	0.1744	0.0030	0.0046	0.0722	0.0027
	26	1.8252	442.81	0.1719	0.0028	0.0045	0.0693	0.0026
	27	1.7878	429.93	0.1693	0.0027	0.0043	0.0663	0.0025
	28	1.7504	417.04	0.1668	0.0026	0.0042	0.0633	0.0024
	29	1.7130	404.16	0.1643	0.0024	0.0041	0.0603	0.0023
	30	1.6756	391.27	0.1617	0.0023	0.0039	0.0573	0.0021
	31	1.6579	383.46	0.1613	0.0022	0.0039	0.0559	0.0021
	32	1.6402	375.65	0.1608	0.0022	0.0038	0.0539	0.0020
	33	1.6225	367.83	0.1603	0.0021	0.0037	0.0529	0.0019
	34	1.6048	360.02	0.1598	0.0020	0.0036	0.0515	0.0019
	35	1.5870	352.21	0.1593	0.0019	0.0035	0.0500	0.0018
	36	1.5734	347.40	0.1594	0.0019	0.0035	0.0491	0.0017
	37	1.5598	342.60	0.1594	0.0018	0.0034	0.0482	0.0017
	38	1.5462	337.79	0.1594	0.0018	0.0034	0.0474	0.0017
	39	1.5326	332.99	0.1594	0.0017	0.0033	0.0465	0.0016
	40	1.5190	328.18	0.1594	0.0017	0.0033	0.0456	0.0016
	41	1.5076	325.84	0.1598	0.0017	0.0033	0.0452	0.0015
	42	1.4963	323.50	0.1602	0.0016	0.0033	0.0449	0.0015
	43	1.4849	321.16	0.1607	0.0016	0.0032	0.0445	0.0015
	44	1.4736	318.82	0.1611	0.0016	0.0032	0.0441	0.0015
	45	1.4622	316.48	0.1615	0.0016	0.0032	0.0438	0.0015
	46	1.4550	316.61	0.1623	0.0016	0.0032	0.0438	0.0014
	47	1.4478	316.74	0.1631	0.0016	0.0032	0.0438	0.0014
	48	1.4405	316.87	0.1639	0.0016	0.0032	0.0437	0.0014
	49	1.4333	317.01	0.1647	0.0015	0.0032	0.0437	0.0014
	50	1.4261	317.14	0.1655	0.0015	0.0032	0.0437	0.0014
	51	1.4181	319.34	0.1663	0.0015	0.0032	0.0439	0.0014
	52	1.4101	321.54	0.1671	0.0015	0.0032	0.0442	0.0014
	53	1.4022	323.75	0.1678	0.0016	0.0033	0.0444	0.0014
	54	1.3942	325.75	0.1676	0.0016	0.0033	0.0444	0.0014
	55	1.3942	325.95	0.1694	0.0016	0.0033	0.0448	0.0014
	56	1.3680	328.15	0.1694	0.0016	0.0033	0.0448	0.0014
	57	1.3680	336.27	0.1666	0.0016	0.0033	0.0448	0.0015
	58	1.3497	340.33	0.1651	0.0016	0.0034	0.0448	0.0015
	59	1.3313	344.39	0.1637	0.0016	0.0034	0.0448	0.0015
	60	1.2950	348.45	0.1623	0.0016	0.0035	0.0448	0.0015
	61							0.0015
	61	1.3020	356.51	0.1640	0.0017	0.0036	0.0462	
	62 63	1.3089 1.3159	364.56 372.62	0.1658 0.1675	0.0017	0.0037	0.0477	0.0016
	63 64	1.3159	372.62 380.68	0.1675	0.0017	0.0037	0.0491	0.0016
	65	1.3229	380.68	0.1693	0.0018	0.0038	0.0505	0.0016
	66	1.3750	397.41 406.07	0.1757	0.0018	0.0040	0.0544	0.0017
	67 68	1.4201	406.07 414.74	0.1804	0.0019	0.0041	0.0568	0.0017
	68	1.4653	414.74	0.1850	0.0019	0.0042	0.0592	0.0018
	70	1.5555	432.08	0.1944	0.0020	0.0043	0.0640	0.0018
	70	1.5555	402.00	0.1344	0.0020	0.0043	0.0040	U.

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2036

Mode	Speed	co	CO ₂	NO _x	PM ₁₀	SO _x	VOC	PM _{2.5}
Auto	0	0.6940	45.66	0.0331	0.0014	0.0005	0.0462	0.0013
	5	1.0344	735.07	0.0699	0.0066	0.0074	0.1171	0.006
	6	1.0041	696.96	0.0674	0.0061	0.0070	0.1088	0.0056
	7	0.9737	658.86	0.0650	0.0056	0.0066	0.1004	0.0052
	8	0.9434	620.76	0.0626	0.0051	0.0062	0.0920	0.004
	9		582.66			0.0052	0.0920	
	-	0.9130		0.0601	0.0046			0.0043
	10	0.8827	544.56	0.0577	0.0041	0.0054	0.0753	0.0038
	11	0.8622	519.72	0.0564	0.0039	0.0052	0.0706	0.003
	12	0.8416	494.88	0.0550	0.0036	0.0050	0.0659	0.0033
	13	0.8211	470.04	0.0537	0.0033	0.0047	0.0612	0.0030
	14	0.8006	445.20	0.0524	0.0030	0.0045	0.0565	0.002
	15	0.7800	420.36	0.0510	0.0028	0.0042	0.0517	0.0025
	16	0.7621	403.50	0.0499	0.0026	0.0040	0.0486	0.0024
	17	0.7441	386.63	0.0489	0.0024	0.0039	0.0456	0.002
	18	0.7261	369.76	0.0478	0.0023	0.0037	0.0425	0.002
	19	0.7082	352.89	0.0467	0.0021	0.0035	0.0394	0.0019
	20	0.6902	336.02	0.0456	0.0019	0.0034	0.0363	0.0018
	21	0.6767	324.45	0.0448	0.0018	0.0032	0.0345	0.0017
	22	0.6632	312.87	0.0440	0.0017	0.0031	0.0327	0.0016
	23	0.6497	301.30	0.0431	0.0016	0.0030	0.0309	0.0015
	24	0.6362	289.73	0.0423	0.0015	0.0029	0.0291	0.0014
	25	0.6227	278.16	0.0415	0.0014	0.0028	0.0273	0.0013
	26	0.6110	270.26	0.0409	0.0014	0.0027	0.0261	0.0013
	27	0.5993	262.35	0.0403	0.0014	0.0027	0.0250	0.0013
	28	0.5877	254.45	0.0395	0.0013	0.0025	0.0238	0.0012
	29	0.5760	246.55	0.0389	0.0012	0.0025	0.0236	0.001
	30	0.5760	246.55	0.0389	0.0012	0.0025	0.0227	0.001
	31	0.5571	233.62	0.0380	0.0011	0.0023	0.0208	0.0010
	32	0.5500	228.61	0.0378	0.0010	0.0023	0.0201	0.0009
	33	0.5428	223.59	0.0376	0.0010	0.0022	0.0194	0.0009
	34	0.5356	218.57	0.0374	0.0010	0.0022	0.0187	0.0009
	35	0.5284	213.55	0.0372	0.0009	0.0021	0.0180	0.0008
	36	0.5216	210.51	0.0370	0.0009	0.0021	0.0176	0.0008
	37	0.5148	207.47	0.0368	0.0009	0.0021	0.0171	0.0008
	38	0.5079	204.43	0.0366	0.0008	0.0020	0.0167	0.0008
	39	0.5011	201.39	0.0364	0.0008	0.0020	0.0162	0.0008
	40	0.4943	198.35	0.0362	0.0008	0.0020	0.0158	0.0007
	41	0.4899	196.95	0.0362	0.0008	0.0020	0.0156	0.000
	42	0.4855	195.54	0.0362	0.0008	0.0020	0.0155	0.0007
	43	0.4811	194.14	0.0363	0.0008	0.0019	0.0154	0.0007
	44	0.4768	192.74	0.0363	0.0007	0.0019	0.0152	0.0007
	45	0.4724	191.33	0.0363	0.0007	0.0019	0.0151	0.000
	46	0.4679	191.33	0.0364	0.0007	0.0019	0.0150	0.0007
	47	0.4634	191.33	0.0364	0.0007	0.0019	0.0149	0.0007
	48	0.4589	191.33	0.0364	0.0007	0.0019	0.0149	0.000
	49	0.4544	191.33	0.0364	0.0007	0.0019	0.0148	0.000
	50	0.4500	191.32	0.0365	0.0007	0.0019	0.0147	0.000
	51	0.4455	192.68	0.0365	0.0007	0.0019	0.0148	0.000
	52	0.4410	194.05	0.0365	0.0007	0.0019	0.0148	0.000
	53	0.4365	195.41	0.0365	0.0007	0.0020	0.0149	0.000
	54	0.4320	196.77	0.0365	0.0007	0.0020	0.0150	0.0007
	55	0.4275	198.13	0.0365	0.0007	0.0020	0.0150	0.0007
	56	0.4226	200.79	0.0363	0.0007	0.0020	0.0152	0.0007
	57	0.4178	203.46	0.0362	0.0007	0.0020	0.0154	0.0007
	58	0.4130	206.12	0.0360	0.0007	0.0021	0.0156	0.000
	59	0.4082	208.79	0.0359	0.0008	0.0021	0.0157	0.0007
	60	0.4034	211.45	0.0358	0.0008	0.0021	0.0159	0.000
	61	0.4063	215.99	0.0367	0.0008	0.0021	0.0166	0.000
	62	0.4093	220.54	0.0367	0.0008	0.0022	0.0100	0.0007
	63	0.4093	225.08	0.0377	0.0008	0.0022	0.0173	0.0008
	64	0.4152	229.62	0.0387	0.0008	0.0023	0.0188	0.000
	65	0.4182	234.17	0.0396	0.0008	0.0023	0.0195	0.000
	66	0.4203	238.62	0.0400	0.0009	0.0023	0.0197	0.000
	67	0.4224	243.08	0.0396	0.0009	0.0024	0.0200	0.000
	68	0.4246	247.54	0.0391	0.0009	0.0024	0.0200	0.0008
	69	0.4267	252.00	0.0386	0.0009	0.0025	0.0206	0.0008
	70	0.4288	256.46	0.0382	0.0009	0.0026	0.0200	0.0000

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2016

Mode	Speed	CO	CO ₂	NO _x	PM ₁₀	SO _x	VOC	PM _{2.5}
Auto	0	3.4104	81.98	0.2740	0.0028	0.0009	0.2826	0.0026
	5	3.6818	1213.16	0.3465	0.0133	0.0122	0.3386	0.0123
	6	3.5051	1148.57	0.3282	0.0123	0.0115	0.3105	0.0114
	7	3.3284	1083.98	0.3099	0.0113	0.0109	0.2824	0.0104
	8	3,1516	1019.40	0.2917	0.0103	0.0102	0.2543	0.0095
Truck	0	4.8572	39.19	1.7997	0.0015	0.2774	0.4175	0.0000
HUCK	5	5.1803	2187.60	7.9756	0.1137	0.0202	1.0547	0.1087
	6	4.9501	2147.78	7.8499	0.1140	0.0199	1.0224	0.1089
	7	4.7200	2107.96	7.7242	0.1143	0.0195	0.9901	0.1092
	8	4.4898	2068.13	7.5986	0.1146	0.0192	0.9579	0.1095
	9	4.2597	2028.31	7.4729	0.1148	0.0189	0.9256	0.1098
	10	4.0295	1988.49	7.3473	0.1151	0.0185	0.8934	0.1101
	11	3.7759	1843.50	6.7599	0.1061	0.0173	0.8082	0.1015
	12	3.5223	1698.51	6.1725	0.0972	0.0160	0.7230	0.0929
	13	3.2687	1553.51	5.5851	0.0882	0.0147	0.6378	0.0843
	14 15	3.0151	1408.52	4.9977	0.0792	0.0134	0.5525	0.0757
	15 16	2.7615	1263.53 1263.49	4.4103 4.4801	0.0703	0.0121	0.4673	0.0671
	17	2.5504	1263.44	4.5499	0.0708	0.0121	0.4210	0.0677
	18	2.4449	1263.40	4.6197	0.0700	0.0121	0.3979	0.0679
	19	2.3394	1263.35	4.6895	0.0713	0.0121	0.3747	0.0682
	20	2.2339	1263.31	4.7593	0.0716	0.0121	0.3516	0.0685
	21	2.1458	1237.01	4.6190	0.0677	0.0119	0.3310	0.0647
	22	2.0577	1210.72	4.4786	0.0637	0.0116	0.3105	0.0610
	23	1.9697	1184.43	4.3383	0.0598	0.0114	0.2900	0.0572
	24	1.8816	1158.13	4.1979	0.0559	0.0111	0.2695	0.0534
	25	1.7935	1131.84	4.0576	0.0520	0.0108	0.2489	0.0497
	26	1.7441	1138.52	4.0783	0.0519	0.0109	0.2424	0.0496
	27	1.6947	1145.20	4.0990	0.0518	0.0110	0.2358	0.0495
	28	1.6453	1151.87	4.1197	0.0517	0.0110	0.2293	0.0495
	29	1.5959	1158.55	4.1404	0.0517	0.0111	0.2227	0.0494
	30	1.5465	1165.23	4.1611	0.0516	0.0111	0.2162	0.0493
	31	1.5050	1199.22	4.2631	0.0526	0.0114	0.2128	0.0503
	32	1.4634	1233.21	4.3651	0.0537	0.0117	0.2095	0.0513
	33 34	1.4219	1267.20	4.4671	0.0547	0.0120	0.2061	0.0524
	34 35	1.3803 1.3387	1301.19 1335.18	4.5691 4.6711	0.0558	0.0123	0.2028	0.0534
	36	1.3387	1335.18	4.6418	0.0568	0.0126	0.1994	0.0544
	37	1.2667	1327.17	4.6126	0.0575	0.0126	0.1934	0.0556
	38	1.2306	1323.16	4.5833	0.0587	0.0125	0.1812	0.0562
	39	1.1946	1319.16	4.5540	0.0593	0.0125	0.1751	0.0567
	40	1.1586	1315.15	4.5247	0.0599	0.0125	0.1690	0.0573
	41	1.1260	1312.39	4.5116	0.0598	0.0124	0.1638	0.0572
	42	1.0934	1309.62	4.4984	0.0597	0.0124	0.1585	0.0571
	43	1.0609	1306.85	4.4852	0.0596	0.0124	0.1533	0.0570
	44	1.0283	1304.08	4.4720	0.0594	0.0124	0.1480	0.0569
	45	0.9958	1301.32	4.4589	0.0593	0.0124	0.1428	0.0567
	46	0.9927	1264.42	4.3777	0.0582	0.0120	0.1381	0.0556
	47	0.9897	1227.52	4.2964	0.0570	0.0117	0.1334	0.0545
	48	0.9866	1190.62	4.2152	0.0559	0.0114	0.1287	0.0534
	49	0.9836	1153.73	4.1340	0.0547	0.0110	0.1240	0.0523
	50	0.9805	1116.83	4.0528	0.0535	0.0107	0.1193	0.0512
	51	0.9565	1133.04	4.1049	0.0565	0.0109	0.1190	0.0541
	52	0.9324	1149.25	4.1569	0.0595	0.0110	0.1188	0.0569
	53	0.9083	1165.46	4.2090	0.0625	0.0112	0.1185	0.0597
	54	0.8842	1181.67	4.2610	0.0654	0.0113	0.1182	0.0626
	55	0.8601	1197.87	4.3131	0.0684	0.0115	0.1179	0.0654
	56 57	0.8633	1184.58	4.2356	0.0702	0.0114	0.1175	0.0672
	58	0.8665	1171.29	4.1582 4.0807	0.0721	0.0112	0.1170	0.0689
	59	0.8696 0.8728	1158.00 1144.71	4.0807	0.0739	0.0111	0.1166 0.1162	0.0707
	60	0.8728	1131.42	3.9257	0.0757	0.0110	0.1162	0.0742
	61	0.8760	1131.42	3.9257	0.0776	0.0109	0.1157	0.0742
	62	0.8894	1131.74	3.9251	0.0750	0.0109	0.1151	0.0694
	63	0.9028	1132.07	3.9237	0.0723	0.0109	0.1143	0.0669
	64	0.9103	1132.39	3.9230	0.0700	0.0109	0.1139	0.0645
	65	0.9297	1132.72	3.9230	0.0674	0.0109	0.1133	0.0645
	66	0.9431	1151.08	3.9224	0.0649	0.0109	0.1127	0.0521
	67	0.8949	1169.12	3.8966	0.0579	0.0110	0.1098	0.0554
	68	0.8707	1187.17	3.8837	0.0544	0.0112	0.1042	0.0521
	69	0.8466	1205.21	3.8708	0.0509	0.0115	0.1014	0.0321
	70	0.8225	1223.25	3.8579	0.0475	0.0117	0.0986	0.0454

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2036

Mode	Speed	СО	CO ₂	NO _x	PM ₁₀	SO _x	VOC	PM _{2.5}
Auto	0	0.6940	45.66	0.0331	0.0014	0.0005	0.0462	0.0013
	5	1.0344	735.07	0.0699	0.0066	0.0074	0.1171	0.0061
	6	1.0041	696.96	0.0674	0.0061	0.0070	0.1088	0.0056
	7	0.9737	658.86	0.0650	0.0056	0.0066	0.1004	0.0052
	8	0.9434	620.76	0.0626	0.0051	0.0062	0.0920	0.0047
Truck	0	1.8187	31.73	3,5930	0.0001	0.0002	0.0920	0.00047
Truck	5	4.6433	2312.07	10.1441	0.0006	0.0003	0.1107	0.000
	6	4.6433	2256.43	9.6372	0.0129	0.0198	0.4427	0.012
	7	4.0927	2200.43	9.6372	0.0124	0.0194	0.4211	0.0114
	8	3.8174	2145.13	8.6234	0.0115	0.0186	0.3780	0.0109
	9	3.5421	2089.48	8.1165	0.0110	0.0183	0.3564	0.010
	10	3.2668	2033.84	7.6096	0.0105	0.0179	0.3349	0.0100
	11	2.9097	1905.69	6.8507	0.0103	0.0169	0.3092	0.0098
	12	2.5527	1777.54	6.0919	0.0100	0.0159	0.2835	0.0096
	13	2.1957	1649.39	5.3330	0.0098	0.0150	0.2578	0.0093
	14	1.8386	1521.24	4.5742	0.0096	0.0140	0.2322	0.009
	15	1.4816	1393.10	3.8153	0.0093	0.0130	0.2065	0.0089
	16	1.3940	1385.68	3.6087	0.0089	0.0130	0.1945	0.008
	17	1.3064	1378.26	3.4020	0.0085	0.0129	0.1824	0.008
	18	1.2188	1370.84	3.1953	0.0081	0.0129	0.1704	0.0078
	19	1.1312	1363.42	2.9887	0.0077	0.0129	0.1583	0.0074
	20	1.0436	1356.00	2.7820	0.0073	0.0128	0.1463	0.0070
	21 22	0.9988 0.9541	1325.74	2.5267	0.0072	0.0125	0.1372	0.0068
	22	0.9541	1295.48 1265.22	2.2714	0.0070	0.0122	0.1282	0.006
	23	0.9093	1205.22	1.7608	0.0066	0.0119	0.1192	0.0063
	24 25	0.8198	1234.96	1.7608	0.0066	0.0116	0.1101	0.006
	25 26	0.8198	1204.71	1.5055	0.0063	0.0113	0.1011	0.006
	26	0.7917	1207.23	1.4248	0.0063	0.0114	0.0973	0.0059
	28	0.7356	1212.27	1.2634	0.0060	0.0114	0.0898	0.0057
	29	0.7075	1214.80	1.1827	0.0058	0.0115	0.0861	0.0056
	30	0.6794	1217.32	1.1020	0.0056	0.0115	0.0823	0.0054
	31 32	0.6715	1233.43	1.0586	0.0055	0.0116	0.0796	0.0053
	32	0.6556	1249.54	0.9719	0.0054	0.0117	0.0769	0.0052
	34	0.6556	1281.76	0.9719	0.0054	0.0118	0.0742	0.0050
	35	0.6398	1297.87	0.9285	0.0053	0.0119	0.0715	0.005
	36	0.6063	1289.71	0.8393	0.0052	0.0120	0.0653	0.0048
	37	0.5729	1281.55	0.7935	0.0051	0.0120	0.0653	0.0047
	38	0.5729	1273.38	0.7477	0.0030	0.0119	0.0519	0.0047
	39	0.5060	1265.22	0.7020	0.0049	0.0119	0.0549	0.004
	40	0.3000	1257.05	0.6562	0.0047	0.0118	0.0515	0.0045
	41	0.4723	1253.52	0.6306	0.0047	0.0117	0.0493	0.004
	42	0.4299	1249.98	0.6050	0.0047	0.0117	0.0433	0.0044
	43	0.4086	1246.45	0.5795	0.0046	0.0117	0.0450	0.004
	44	0.3873	1242.91	0.5539	0.0046	0.0117	0.0428	0.004
	45	0.3660	1239.37	0.5283	0.0045	0.0117	0.0406	0.004
	46	0.3462	1218.01	0.5072	0.0045	0.0115	0.0385	0.004
	47	0.3263	1196.64	0.4861	0.0045	0.0113	0.0364	0.004
	48	0.3065	1175.28	0.4649	0.0045	0.0113	0.0343	0.004
	49	0.2866	1153.91	0.4438	0.0044	0.0110	0.0322	0.0042
	50	0.2668	1132.54	0.4226	0.0044	0.0108	0.0322	0.0042
	51	0.2573	1134.57	0.4082	0.0044	0.0108	0.0288	0.0042
	52	0.2478	1136.59	0.3937	0.0043	0.0108	0.0275	0.004
	53	0.2383	1138.62	0.3792	0.0043	0.0109	0.0262	0.0041
	54	0.2288	1140.64	0.3648	0.0042	0.0109	0.0250	0.004
	55	0.2193	1142.66	0.3503	0.0042	0.0109	0.0237	0.0040
	56	0.2078	1127.35	0.3362	0.0041	0.0108	0.0227	0.0039
	57	0.1963	1112.03	0.3221	0.0040	0.0106	0.0217	0.0039
	58	0.1848	1096.71	0.3080	0.0040	0.0105	0.0207	0.0038
	59	0.1733	1081.40	0.2939	0.0039	0.0103	0.0197	0.0037
	60	0.1618	1066.08	0.2798	0.0038	0.0102	0.0188	0.0037
	61	0.1650	1070.20	0.2846	0.0039	0.0102	0.0192	0.0037
	62	0.1682	1074.31	0.2895	0.0040	0.0103	0.0196	0.0038
	63	0.1715	1078.43	0.2943	0.0040	0.0103	0.0200	0.0039
	64	0.1747	1082.54	0.2992	0.0041	0.0104	0.0204	0.0039
	65	0.1779	1086.66	0.3040	0.0041	0.0104	0.0208	0.0040
	66	0.1760	1103.78	0.3088	0.0042	0.0106	0.0212	0.0040
	67	0.1741	1120.90	0.3135	0.0042	0.0107	0.0216	0.0041
				0.3183	0.0043	0.0109	0.0220	0.0041
	68	0.1721	1138.02	0.3183				0.004
	68 69	0.1721	1138.02	0.3183	0.0043	0.0109	0.0224	0.0041

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2016

Mode	Speed	CO	CO ₂	NO _x	PM ₁₀	SO _x	VOC	PM _{2.5}
Auto	0	3.4104	81.98	0.2740	0.0028	0.0009	0.2826	0.0026
	5	3.6818	1213.16	0.3465	0.0133	0.0122	0.3386	0.0123
	6	3.5051	1148.57	0.3282	0.0123	0.0115	0.3105	0.011
	7	3.3284	1083.98	0.3099	0.0113	0.0109	0.2824	0.010
	8	3.1516	1019.40	0.2917	0.0103	0.0102	0.2543	0.009
Bus	0	10.6824	82.09	2.0123	0.0012	0.0010	0.6855	0.001
	5	19.5713	3427.66	22.0894	0.4156	0.0272	3.1109	0.397
	6	18.6137	3345.92	21.1559	0.3970	0.0267	2.9232	0.379
	7	17.6561	3264.17	20.2224	0.3785	0.0261	2.7356	0.362
	8	16.6985	3182.43	19.2889	0.3600	0.0255	2.5480	0.344
	9	15.7409	3100.68	18.3553	0.3415	0.0250	2.3604	0.326
	10	14.7833	3018.94	17.4218	0.3230	0.0244	2.1728	0.308
	11	13.9614	2881.27	16.5060	0.3034	0.0232	1.9877	0.290
	12	13.1394	2743.60	15.5903	0.2838	0.0220	1.8026	0.271
	13	12.3175	2605.93	14.6745	0.2642	0.0208	1.6175	0.252
	14	11.4955	2468.25	13.7588	0.2446	0.0196	1.4324	0.233
	15	10.6736	2330.58	12.8430	0.2250	0.0184	1.2473	0.215
	16	10.6229	2266.47	12.7712	0.2193	0.0175	1.1680	0.209
	17	10.5723	2202.36	12.6993	0.2136	0.0167	1.0886	0.204
	18 19	10.5216	2138.25	12.6275	0.2079	0.0158	1.0093	0.198
	20	10.4710 10.4204	2074.14	12.5556 12.4838	0.2022 0.1965	0.0150 0.0141	0.9300 0.8506	0.193
	21	8.8913	1886.19	11.1329	0.1690	0.0141	0.7311	0.161
	22	7.3623	1762.35	9.7821	0.1416	0.0137	0.6115	0.135
	23	5.8333	1638.51	8.4313	0.1142	0.0134	0.4920	0.109
	24	4.3043	1514.66	7.0804	0.0868	0.0132	0.3724	0.083
	25	2.7753	1390.82	5.7296	0.0594	0.0130	0.2529	0.056
	26	2.7002	1372.44	5.6622	0.0576	0.0128	0.2422	0.055
	27	2.6250	1354.06	5.5948	0.0558	0.0126	0.2315	0.053
	28	2.5498	1335.67	5.5273	0.0539	0.0124	0.2208	0.051
	29	2.4746	1317.29	5.4599	0.0521	0.0123	0.2102	0.049
	30	2.3995	1298.91	5.3925	0.0503	0.0121	0.1995	0.048
	31	2.3420	1282.69	5.3486	0.0492	0.0120	0.1915	0.047
	32	2.2845	1266.48	5.3046	0.0480	0.0118	0.1836	0.045
	33	2.2270	1250.27	5.2607	0.0469	0.0117	0.1757	0.044
	34	2.1695	1234.05	5.2168	0.0457	0.0116	0.1678	0.043
	35	2.1120	1217.84	5.1728	0.0445	0.0114	0.1598	0.042
	36	2.0857	1213.36	5.0993	0.0437	0.0114	0.1557	0.041
	37	2.0594	1208.88	5.0258	0.0429	0.0113	0.1516	0.041
	38	2.0332	1204.40	4.9523	0.0421	0.0113	0.1475	0.040
	39	2.0069	1199.92	4.8788	0.0413	0.0112	0.1434	0.039
	40 41	1.9806 1.9688	1195.43	4.8052	0.0405	0.0112	0.1393	0.038
	41	1.9588	1187.57 1179.70	4.7070 4.6088	0.0397	0.0111	0.1362 0.1330	0.038
	43	1.9453	1171.83	4.5106	0.0389	0.0110	0.1330	0.037
	44	1.9336	1163.96	4.4123	0.0362	0.0108	0.1267	0.035
	45	1.9218	1156.09	4.3141	0.0367	0.0108	0.1235	0.035
	46	1.8909	1152.61	4.2857	0.0369	0.0107	0.1233	0.035
	47	1.8600	1149.13	4.2572	0.0371	0.0107	0.1208	0.035
	48	1.8291	1145.65	4.2288	0.0373	0.0107	0.1194	0.035
	49	1.7982	1142.17	4.2004	0.0375	0.0106	0.1180	0.035
	50	1.7673	1138.69	4.1719	0.0377	0.0106	0.1166	0.036
	51	1.7408	1137.05	4.2359	0.0389	0.0106	0.1169	0.037
	52	1.7143	1135.42	4.2998	0.0402	0.0106	0.1172	0.038
	53	1.6878	1133.78	4.3638	0.0414	0.0105	0.1175	0.039
	54	1.6613	1132.15	4.4277	0.0427	0.0105	0.1178	0.040
	55	1.6348	1130.51	4.4916	0.0440	0.0105	0.1181	0.042
	56	1.6585	1135.25	4.5276	0.0451	0.0105	0.1215	0.043
	57	1.6822	1139.98	4.5635	0.0463	0.0105	0.1249	0.044
	58	1.7059	1144.71	4.5994	0.0474	0.0106	0.1283	0.045
	59	1.7296	1149.45	4.6354	0.0486	0.0106	0.1317	0.046
	60	1.7533	1154.18	4.6713	0.0497	0.0106	0.1351	0.047
	61	1.7947	1155.82	4.5966	0.0489	0.0105	0.1380	0.046
	62	1.8361	1157.45	4.5218	0.0481	0.0105	0.1409	0.046
	63	1.8775	1159.09	4.4471	0.0473	0.0105	0.1439	0.045
	64	1.9189	1160.73	4.3724	0.0465	0.0105	0.1468	0.044
	65	1.9602	1162.37	4.2976	0.0457	0.0104	0.1497	0.043
	66	2.1296	1155.48	4.0816	0.0427	0.0103	0.1552	0.040
	67	2.2989	1148.59	3.8657 3.6497	0.0396	0.0102	0.1606	0.0379
					0.0366	0.0101	0.1660	
	68 69	2.4683 2.6376	1141.70 1134.81	3.4337	0.0336	0.0100	0.1715	0.0350

HIGHWAY EMISSIONS FACTORS (g/mi) Model Year 2036

Mode	Speed	со	CO ₂	NO _x	PM ₁₀	SO _x	VOC	PM _{2.5}
Auto	0	0.6940	45.66	0.0331	0.0014	0.0005	0.0462	0.001
	5	1.0344	735.07	0.0699	0.0066	0.0074	0.1171	0.006
	6	1.0041	696.96	0.0674	0.0061	0.0070	0.1088	0.005
	7	0.9737	658.86	0.0650	0.0056	0.0066	0.1004	0.005
	8	0.9434	620.76	0.0626	0.0051	0.0062	0.0920	0.004
Bus	0	5.1788	80.98	2.5880	0.0012	0.0009	0.3524	0.001
	5	9.8072	2999.55	5.2920	0.0368	0.0239	0.3870	0.035
	6	9.1891	2922.57	5.0911	0.0348	0.0234	0.3644	0.033
	7	8.5709	2845.60	4.8902	0.0329	0.0228	0.3417	0.031
	8	7.9528	2768.62	4.6894	0.0309	0.0223	0.3191	0.029
	9	7.3346	2691.64	4.4885	0.0289	0.0218	0.2964	0.027
	10	6.7165	2614.67	4.2876	0.0270	0.0212	0.2738	0.025
	11	6.1348	2484.67	3.9696	0.0252	0.0201	0.2512	0.024
	12	5.5532	2354.67	3.6516	0.0234	0.0189	0.2286	0.022
	13	4.9715	2224.67	3.3336	0.0217	0.0178	0.2060	0.020
	14	4.3899	2094.67	3.0156	0.0199	0.0166	0.1833	0.019
	15	3.8082	1964.68	2.6976	0.0182	0.0154	0.1607	0.017
	16	3.6563	1904.74	2.5064	0.0180	0.0145	0.1489	0.017
	17	3.5044	1844.81	2.3152	0.0179	0.0135	0.1370	0.017
	18	3.3525	1784.88	2.1240	0.0178	0.0126	0.1251	0.017
	19	3.2006	1724.95	1.9328	0.0176	0.0116	0.1133	0.016
	20	3.0487	1665.02	1.7416	0.0175	0.0107	0.1014	0.016
	21	2.5385	1582.49	1.6010	0.0148	0.0109	0.0929	0.014
	22	2.0284	1499.96	1.4603	0.0122	0.0111	0.0843	0.011
	23	1.5183	1417.43	1.3197	0.0095	0.0114	0.0758	0.009
	24	1.0082	1334.89	1.1791	0.0068	0.0116	0.0673	0.006
	25	0.4981	1252.36	1.0384	0.0041	0.0118	0.0587	0.003
	26	0.4776	1237.58	0.9754	0.0040	0.0117	0.0559	0.003
	27	0.4571	1222.81	0.9124	0.0039	0.0115	0.0531	0.003
	28	0.4366	1208.03	0.8493	0.0038	0.0114	0.0503	0.003
	29	0.4162	1193.25	0.7863	0.0037	0.0113	0.0474	0.003
	30	0.3957	1178.47	0.7233	0.0036	0.0111	0.0446	0.003
	31	0.3799	1165.30	0.6873	0.0035	0.0110	0.0424	0.003
	32	0.3642	1152.13	0.6513	0.0035	0.0109	0.0401	0.003
	33	0.3485	1138.97	0.6154	0.0034	0.0108	0.0379	0.003
	34	0.3327	1125.80	0.5794	0.0033	0.0106	0.0356	0.003
	35	0.3170	1112.63	0.5435	0.0033	0.0105	0.0334	0.003
	36	0.3098	1109.21	0.5225	0.0032	0.0105	0.0319	0.003
	37	0.3026	1105.78	0.5015	0.0032	0.0104	0.0305	0.003
	38	0.2955	1102.35	0.4805	0.0031	0.0104	0.0290	0.003
	39	0.2883	1098.92	0.4595	0.0031	0.0104	0.0276	0.002
	40	0.2811	1095.50	0.4385	0.0030	0.0103	0.0262	0.002
	41 42	0.2757	1088.64	0.4217	0.0030	0.0103	0.0249	0.002
	42	0.2702	1081.79	0.4050	0.0029	0.0102	0.0237	0.002
	43	0.2593	1074.94	0.3882	0.0029	0.0101	0.0224	0.002
	44 45	0.2593	1068.09	0.3715	0.0028	0.0100	0.0212	0.002
	45 46	0.2539	1061.24	0.3548	0.0027	0.0100	0.0199	0.002
	46	0.2474	1059.07	0.3451	0.0027	0.0100	0.0193	0.002
	47	0.2410	1056.90	0.3354	0.0027	0.0099	0.0187	0.002
	48	0.2346	1054.73	0.3257	0.0027	0.0099	0.0181	0.002
	50	0.2217	1052.36	0.3063	0.0027	0.0099	0.0173	0.002
	51	0.2164	1048.76	0.3035	0.0027	0.0033	0.0165	0.002
	52	0.2104	1045.76	0.3035	0.0027	0.0098	0.0163	0.002
	53	0.2111	1047.14	0.3006	0.0027	0.0098	0.0157	0.002
	54	0.2006	1043.88	0.2948	0.0028	0.0098	0.0157	0.002
	55	0.1954	1042.25	0.2919	0.0028	0.0098	0.0132	0.002
	56	0.1959	1045.09	0.2934	0.0020	0.0098	0.0148	0.002
	57	0.1963	1047.93	0.2949	0.0029	0.0098	0.0149	0.002
	58	0.1968	1050.76	0.2965	0.0030	0.0098	0.0149	0.002
	59	0.1973	1053.60	0.2980	0.0031	0.0098	0.0149	0.002
	60	0.1978	1056.44	0.2995	0.0031	0.0098	0.0149	0.003
	61	0.2010	1057.33	0.2952	0.0031	0.0098	0.0151	0.002
	62	0.2041	1058.23	0.2909	0.0030	0.0098	0.0153	0.002
	63	0.2073	1059.13	0.2867	0.0030	0.0098	0.0154	0.002
	64	0.2105	1060.03	0.2824	0.0030	0.0098	0.0156	0.002
	65	0.2137	1060.93	0.2781	0.0029	0.0098	0.0158	0.002
	66	0.2299	1055.18	0.2781	0.0029	0.0096	0.0162	0.002
	67	0.2461	1049.43	0.2780	0.0028	0.0095	0.0166	0.002
	68	0.2623	1043.68	0.2780	0.0028	0.0094	0.0170	0.002
	68	0.2023						
	69	0.2023	1037.93	0.2780	0.0027	0.0093	0.0174	0.002

Source: California Air Resources Board, EMFAC 2014

Notes: 1) Zero mph corresponds to starts, 2) Other emissions factors include idling emissions and exclude diurnal and evaporative emissions, 3) Five mph is best estimate for idling

HEALTH COST OF TRANSPORTATION EMISSIONS

(\$/ton)

Proj Loc	co	CO₂e	NO _x	PM ₁₀	SOx	voc
1	\$160	\$38	\$63,900	\$523,300	\$196,600	\$3,970
2	\$80	\$38	\$18,700	\$151,100	\$75,500	\$1,305
3	\$75	\$38	\$13,900	\$107,700	\$54,400	\$1,025
	1 2 3	2 \$80	2 \$80 \$38	2 \$80 \$38 \$18,700	2 \$80 \$38 \$18,700 \$151,100	2 \$80 \$38 \$18,700 \$151,100 \$75,500

CO₂e Uprater 2.0% increase in value per year

Sources: McCubbin and Delucchi, 1996 for emissions other than CO2e Interagency Working Group on Social Cost of Carbon, United States Government, 2016 for CO2e

PASSENGER TRAIN EMISSIONS FACTORS (g/train-mile) Year CO CO₂ NO_X PM₁₅ SO_X VOC PM₂₅ 2002 45.67 583.58 62.02 19.73 2022 45.67 250.11 31.01 19.73 Mode Passenger Train LIGHT RAIL EMISSIONS FACTORS (g/veh-mile)

Mode	Year	co	CO2	NO _x	PM ₁₀	SOx	VOC	PM _{2.5}
Light Rail	2002	0.14		1.13	0.17		0.06	
	2022	0.14		1.14	0.17		0.06	

FREIGHT LOCOMOTIVE EMISSIONS FACTORS

(g/gal)

Mode	Year	со	CO ₂	NO _x	PM ₁₀	sox	voc	PM _{2.5}
Freight Rail	2030		10,206	28.10	0.43			
	2030		10.206	28.10	0.43			

Freight Rail Fuel Efficiency Fuel Burned at Idle 468 ton-miles/gal 4.00 gal/hr

Sources: California Air Resources Board
Association of American Railioads, The Environmental Benefits of Moving Freight by Rail, June 2017
California Environmental Protection Agency / Air Resources Board, Technology Assessment:
Freight Locarnotivus, November 2016

Pavement Adjustments (used only for pavement projects)

PAVEMENT DETERIORATION

	Yea	r 20, By Loa	ding
Year 0	Light	Medium	Heavy
0	125	150	350
25	150	200	500
50	175	250	675
75	200	300	750
100	275	400	750
125	325	475	750
150	400	575	750
175	500	700	750
200	575	750	750
225	650	750	750
250	750	750	750
275	750	750	750
300	750	750	750
325	750	750	750
350	750	750	750
375	750	750	750
400	750	750	750
425	750	750	750
450	750	750	750

VEHICLE OPERATING SPEED (percent adjustment)

IRI	Auto	Truck
0	1.000	1.025
25	1.000	1.025
50	1.000	1.025
75	1.000	1.025
100	1.000	1.025
125	1.000	1.025
150	1.000	1.013
175	1.000	1.000
200	1.000	0.980
225	1.000	0.949
250	1.000	0.919
275	0.991	0.890
300	0.981	0.862
325	0.971	0.834
350	0.961	0.808
375	0.952	0.782
400	0.942	0.758
425	0.932	0.734
450	0.923	0.709

Source: Paterson, 1987

Source: Botterill, 1996 and 1997

FL	JEL	CONS	SUM	PTI	ON

IRI	Auto	Truck
0	0.971	0.961
25	0.977	0.965
50	0.980	0.970
75	0.982	0.975
100	0.985	0.980
125	0.990	0.986
150	0.995	0.993
175	1.000	1.000
200	1.005	1.007
225	1.012	1.017
250	1.019	1.026
275	1.027	1.036
300	1.034	1.047
325	1.041	1.058
350	1.050	1.070
375	1.061	1.085
400	1.072	1.100
425	1.082	1.114
450	1.093	1.129

NON-FUEL COSTS (percent adjustment)

IRI	Auto	Truck
0	1.000	1.000
25	1.000	1.000
50	1.000	1.000
75	1.000	1.000
100	1.000	1.000
125	1.000	1.000
150	1.017	1.018
175	1.034	1.038
200	1.052	1.058
225	1.070	1.078
250	1.088	1.097
275	1.105	1.117
300	1.123	1.137
325	1.141	1.156
350	1.159	1.176
375	1.176	1.196
400	1.194	1.216
425	1.212	1.235
450	1.230	1.255

Source: Texas Transportation Institute, 1994

Source: ARRB Research Board TR VOC Model

Weaving Adjustments (used only for freeway

connector, HOV connector, and HOV drop ramp projects)

VEHICLE OPERATING SPEED

Percent	Freeway	HOV
Weaving	Conn	Project
0.000	1.000	1.000
0.002	0.982	0.988
0.004	0.964	0.976
0.006	0.945	0.964
0.008	0.927	0.952
0.010	0.909	0.939
0.012	0.891	0.927
0.014	0.873	0.915
0.016	0.855	0.903
0.018	0.836	0.891
0.020	0.789	0.879
0.022	0.747	0.867
0.024	0.706	0.855
0.026	0.664	0.842
0.028	0.623	0.817
0.030	0.581	0.789
0.032	0.540	0.761
0.034	0.498	0.734
0.036	0.476	0.706
0.038	0.473	0.678
0.040	0.471	0.650
0.042	0.468	0.623
0.044	0.466	0.595
0.046	0.463	0.567
0.048	0.460	0.540
0.050	0.458	0.512
0.052	0.455	0.484
0.054	0.453	0.476
0.056	0.453	0.474
0.058	0.453	0.473
0.060	0.453	0.471
0.062	0.453	0.469
0.064	0.453	0.467
0.066	0.453	0.466
0.068	0.453	0.464
0.070	0.453	0.462
0.072	0.453	0.460
0.074	0.453	0.459
0.076	0.453	0.457
0.078	0.453	0.455
0.080	0.453	0.453

Source: Fitzpatrick, Brewer, and Venglar, 2003

 $\textbf{\textit{TMS Adjustments}} \ \ (\text{used only for ramp metering, ramp metering signal coordination, incident}$

management, traveler information projects, AVL, transit priority, and BRT projects)

PEAK PERIOD SPEED, VOLUME, AND NON-HIGHWAY BENEFITS

TMS	Wit	hout	W	ith	Non-l	Highway Be	nefits	Total
Strategy	Speed	Volume	Speed	Volume	TT	VOC	Em	Benefit
AMoth	1.02	0.95	1.02	0.95	-5.05	12.81	1.37	0.74
AMsev	1.53	0.94	1.53	0.94	1.21	1.38	-0.37	1.00
IMoth	0.88	1.18	0.98	0.96	0.51	0.15	0.06	0.74
IMsev	1.01	0.97	1.01	0.95	0.30	0.31	0.30	1.00
NoAdj	1.00	1.00	1.00	1.00	0.00	0.00	0.00	1.00
ORoth	0.98	1.03	1.00	1.00	-0.07	-0.03	-0.07	
ORsev	0.95	1.03	1.00	1.00	0.00	0.00	5.67	
RMoth	1.00	1.00	1.03	0.97	-0.07	-0.03	-0.07	1.00
RMsev	1.00	1.00	1.05	0.97	0.00	0.00	5.67	1.00
Tloth	1.00	1.00	1.02	0.97	-0.11	-0.12	-0.35	1.00
Tisev	1.00	1.00	1.01	0.97	-0.39	-0.39	-0.35	1.00

Source: California Department of Transportation TMS Master Plan, 2003 29) Chaudhary and Messer, 2000

TRANSIT TRAVEL TIME AND AGENCY COST SAVINGS (percent savings)

	Travel	Agency	Costs
TMS Strategy	Time	Capital	O&M
Transit Vehicle Location (AVL)	15%	2%	8%
Transit Vehicle Signal Priority	10%		-
Bus Rapid Transit (BRT)	29%		-

Sources: FHWA ITS Deployment Analysis System (IDAS), California PATH

CITY OF OAKLAND

CITY HALL • ONE CITY HALL PLAZA • OAKLAND, CALIFORNIA 94612

Office of the Mayor Honorable Libby Schaaf

January 22, 2018

(510) 238-3141 FAX (510) 238-4731 TDD (510) 238-3254

Susan Bransen
Executive Director, California Transportation Commission
1120 N Street, MS-52
P.O. Box 942873
Sacramento, CA 95814

RE: Alameda-Contra Costa Transit District's FY 2018 Local Partnership Program Competitive Grant Application

Dear Ms. Bransen,

As Mayor of Oakland, I am pleased to support Alameda-Contra Costa Transit District's (AC Transit's) 2018 Local Partnership Program (LPP) grant application to purchase up to 59 urban 40-foot hybrid diesel-electric buses to replace existing diesel buses due for retirement. We need to upgrade and expand our bus fleet, particularly given our current and projected growth in jobs and housing, and our large populations in transit-dependent, low-income, Communities of Concern, and Community Air Risk Evaluation (CARE) communities. AC Transit is also needed to carry more people on the Bay Bridge Transbay Corridor, which is operating over capacity, and impacts Oakland communities.

Changing buses to diesel-electric hybrid will directly reduce diesel particulate emissions in Oakland, which would be greatly benefit the communities most affected by emissions and will also be more efficient to operate. AC Transit needs approximately \$47.2 million for this project; they asking for \$15 million in LPP Competitive funds which would greatly help leverage the project's funding package. I strongly support AC Transit's LPP grant application, as it will provide critically needed transit service and reduced emissions in the East Bay by 2020. Please contact Matt Nichols, my Policy Director for Transportation and Infrastructure (mdnichols@oaklandnet.com) if you have any questions.

Sincerely,

Libby Schaaf

City of Alameda California

January 23, 2018

Susan Bransen
Executive Director
California Transportation Commission
P.O. Box 942873
Sacramento, CA 95814

RE: Alameda-Contra Costa Transit District's FY 2018 Local Partnership Program Competitive Grant Application

Dear Ms. Bransen:

On behalf of the City of Alameda, I am pleased to support Alameda-Contra Costa Transit District's (AC Transit's) FY 2018 Local Partnership Program (LPP) competitive grant application to purchase up to 59 urban 40-foot hybrid diesel-electric buses to replace existing diesel buses that are due for retirement from the fleet. Changing the bus propulsion method from diesel to diesel-electric hybrid will reduce emissions and will improve fuel economy, which would be greatly beneficial to the environment. The new buses will be equipped with real-time bus dispatch and tracking systems, electronic and cash fare collection and bike racks.

These new buses are consistent with the City's Transportation Choices Plan (2018) and the Climate Plan (2008). Both of these City plans recommend more reliable bus service using more environmentally friendly buses that have a smaller carbon footprint and that transport the maximum number of bicycles. The City of Alameda and AC Transit have a vibrant partnership with these shared goals and have constant collaboration to ensure Alamedans' travel needs are well met. Being that Alameda does not have a BART station, AC Transit bus service is especially important to connect Alamedans with regional transit stations, including BART stations in Oakland and also to/from the two ferry terminals in Alameda and the new San Francisco Transbay terminal.

AC Transit estimates that the project will cost approximately \$47.2 million in total, is asking for up to \$15 million in LPP competitive funds to assist in completing the project, and expects to be able to have the new buses in service by 2020. The City of Alameda is supporting the AC Transit Fiscal Year 2018 LPP competitive application, as it will sustain critically needed bus service in Alameda and in the East Bay. Please contact me or Jennifer Ott, Director of Base Reuse and Transportation Planning, at 510-747-4747 or jott@alamedaca.gov if you have any questions or require additional information.

Sincerely,

Trish Herrera Spencer

Mayor

THS:mk

Office of the Mayor

2263 Santa Clara Avenue, Room 320 Alameda, California 94501 510.747.4701

Jesse Arreguín Mayor

January 22, 2018

Susan Bransen
Executive Director
California Transportation Commission
1120 N Street, MS-52
P.O. Box 942873
Sacramento, CA 95814

RE: Alameda-Contra Costa Transit District's FY 2018 Local Partnership Program Competitive Grant Application

Dear Ms. Bransen,

On behalf of the City of Berkeley, I am pleased to support Alameda-Contra Costa Transit District's (AC Transit's) FY 2018 Local Partnership Program (LPP) Competitive grant application to purchase up to 59 urban 40-foot hybrid diesel-electric buses to replace existing diesel buses that are due for retirement from fleet.

The new buses will be equipped with real-time bus dispatch and tracking systems, electronic and cash fare collection, and bike racks. These buses are needed in order to maintain our fleet and service levels in the East Bay which continues a fast growth rate in terms of jobs and population. Changing the bus propulsion method from diesel to diesel-electric hybrid will reduce emissions and improve fuel economy, which would be greatly beneficial to the environment. This, in particular, would have a very positive impact on the many Disadvantaged Communities that are within our service area.

We estimate that the project will cost approximately \$47.2 million in total, and are asking for up to \$15 million in LPP Competitive funds to assist in completing the project. We expect to be able to put the new buses into service by 2020.

We hope you will consider AC Transit's FY 2018 LPP Competitive application, as it will support critically needed transit service in the East Bay. Please contact me at 510-981-7100 or mayor@cityofberkeley.info if you have any questions or require additional information.

Sincerely,

Jesse dueguin
Jesse Arreguín

Mayor, City of Berkeley

City of San Leandro

Civic Center, 835 E. 14th Street San Leandro, California 94577 www.sanleandro.org

January 19, 2018

Susan Bransen
Executive Director
California Transportation Commission
1120 N Street, MS-52
P.O. Box 942873
Sacramento, CA 95814

RE: Alameda-Contra Costa Transit District's FY 2018 Local Partnership Program Competitive Grant Application

Dear Ms. Bransen,

On behalf of the City of San Leandro, I am pleased to support Alameda-Contra Costa Transit District's (AC Transit's) FY 2018 Local Partnership Program (LPP) Competitive grant application to purchase up to 59 urban 40-foot hybrid diesel-electric buses to replace existing diesel buses that are due for retirement from fleet.

The new buses will be equipped with real-time bus dispatch and tracking systems, electronic and cash fare collection, and bike racks. These buses are needed in order to maintain our fleet and service levels in the East Bay which continues a fast growth rate in terms of jobs and population. Changing the bus propulsion method from diesel to diesel-electric hybrid will reduce emissions and improve fuel economy, which would be greatly beneficial to the environment. This, in particular, would have a very positive impact on the many Disadvantaged Communities that are within our service area.

We estimate that the project will cost approximately \$47.2 million in total, and are asking for up to \$15 million in LPP Competitive funds to assist in completing the project. We expect to be able to put the new buses into service by 2020.

We hope you will consider AC Transit's FY 2018 LPP Competitive application, as it will support critically needed transit service in the East Bay. Please contact me or my staff member Caroline Hernandez at chernandez@sanleandro.org (510)577-3355 if you have any questions or require additional information.

Sincerely, Paule re Russo atte

Pauline Russo Cutter

Mayor, City of San Leandro

Pauline Russo Cutter, Mayor

City Council:

Pete Ballew Benny Lee Deborah Cox

Ed Hernandez

Corina N. López

Lee Thomas

CITY OF NEWARK, CALIFORNIA

37101 Newark Boulevard • Newark, California 94560-3796 • (510) 793-1400 • FAX (510) 794-2306

January 19, 2018

Susan Bransen
Executive Director
California Transportation Commission
1120 N Street, MS-52
P.O. Box 942873
Sacramento, CA 95814

RE: Alameda-Contra Costa Transit District's FY 2018 Local Partnership Program Competitive Grant Application

Dear Ms. Bransen.

On behalf of the City of Newark, I am pleased to support Alameda-Contra Costa Transit District's (AC Transit's) FY 2018 Local Partnership Program (LPP) Competitive grant application to purchase up to 59 urban 40-foot hybrid diesel-electric buses to replace existing diesel buses that are due for retirement from fleet.

The new buses will be equipped with real-time bus dispatch and tracking systems, electronic and cash fare collection, and bike racks. These buses are needed in order to maintain our fleet and service levels in the East Bay which continues a fast growth rate in terms of jobs and population. Changing the bus propulsion method from diesel to diesel-electric hybrid will reduce emissions and improve fuel economy, which would be greatly beneficial to the environment. This, in particular, would have a very positive impact on the many Disadvantaged Communities that are within our service area.

We estimate that the project will cost approximately \$47.2 million in total, and are asking for up to \$15 million in LPP Competitive funds to assist in completing the project. We expect to be able to put the new buses into service by 2020.

We hope you will consider AC Transit's FY 2018 LPP Competitive application, as it will support critically needed transit service in the East Bay. Please contact me or my staff member City Manager, John Becker (510-578-4914 or al.nagy@newark.org) if you have any questions or require additional information.

Sincerely,

Alan L. Nagy Mayor

alar J. Nagry

DTP-0001 (Revised July 2017)

General Instructions

211 0001 (11011	000.00	, _0 ,							a
Amendment (Ex	isting	Project)	No					Date:	1/26/18
District		EA		Project	ID	PPNO	MPO ID	A	lt Proj. ID
04							94526/240382/24	0706	
County	l D	oute/Corrid	dor	PM Bk	PM Ahd		Project Sponsor/		
ALA	1		uOi	I W DK	I W AIIG	ΛI	ameda-Contra Cos		triot
ALA		various							
						M	PO	Eleme	ent
						M	TC	Mass Tr	ansit
Project M	lanage	er/Contact		Ph	one		E-mail Ad	dress	
_	_				91 5405				
	velyn I	Ng		310-68	71 3403		eng@actrar	isit.org	
Project Title									
Purchase Hybrid	d Buse	S							
Location (Proje	ct Lin	nits), Desc	riptio	ı (Scope o	of Work)				
						-electric buses e	quipped with real-time I	ous dispatch and	l tracking
							diesel buses that are d		
							populated cities and ac		
Alameda and Co		-				,	F = F =	.,	
Component						Implement	ting Agency		
PA&ED							9 : .9 : ,		
PS&E									
Right of Way									
Construction									
Legislative Dist	wiete								
		D47 D40	Doo	DOE IO	 	D0 D40 D44	Io	144 0440	CA40 CA45 CA
Assembly:		, חוז, חוס	, DZ0,	D25 Sena	ite:	D9, D10, D11	Congressional:	ATT, CATZ	, CA13, CA15, CA
Project Benefits				Para di bassa	20 1		ettere en en tertene la c	alabba a da a a a a da	lha ananat'anal
							ction on emissions. In a	addition there wil	be operational
savings including	gruer	costs, cost	s or er	igine parts,	braking and	d propulsion syste	ems.		
Purpose and No	eed								
		sing 59 ne	w hvh	rid buses is	to replace l	ouses that are du	e for retirement. With b	uses retiring the	ere is a need to
							levels. Changing the b		
to diesel-electric							Tovolo. Onanging the b	ao propaioion m	otilioa iroini aloooi
	,								
	Ca	tegory				Outputs/Ou	tcomes	Unit	Total
Intercity Rail/Ma				Trans	sit Vehicles				
Therety Rail/Ma	33 TTA	1110		ITALIS	sit veriicies				+
A D A . I				D.1	/D			21.1	
ADA Improvem		.,				ovements No		versible Lane and	
Includes Sustain	nable (Communitie	s Strat	egy Goals	Yes		Reduces Greenhouse	e Gas Emissions	Yes
Project Milesto	ne							Existing	Proposed
Project Study Re		Approved							
Begin Environme			hase						
Circulate Draft E	nviron	mental Do	cumer	nt		Document Type	9		
Draft Project Re	port						•		
End Environmen		ase (PA&E	D Mile	estone)					
Begin Design (P				,					10/01/18
End Design Pha			for A	dvertisemer	nt Milestone)			12/01/18
Begin Right of W						,			
End Right of Wa			f Wav	Certificatio	n Milestone)			
Begin Construct						,			12/01/18
End Construction						filestone)			06/01/20
Begin Closeout I		•			,	-,			07/01/20
End Closeout Ph			enort)						T

PROJECT PROGRAMMING REQUEST

DTP-0001 (Revised July 2017) Date: 1/26/18

District	County	Route	EA	Project ID	PPNO	Alt Proj. ID
04	ALA	various				
Project Title:	Purchase Hybrid Buses					

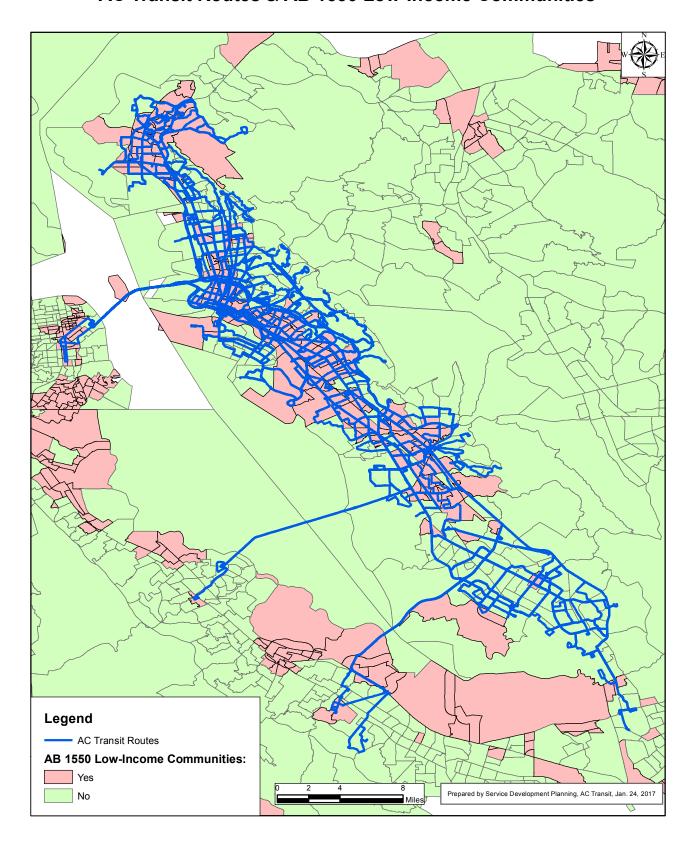
		Exis	ting Total F	Project Cos	t (\$1,000s)				
Component	Prior	18/19	19/20	20/21	21/22	22/23	23/24+	Total	Implementing Agency
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL									
		Prop	osed Total	Project Co	st (\$1,000s)				Notes
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON		253	46,947					47,200	
TOTAL		253	46,947					47,200	

Fund No. 1:									Program Code
			Existing F	unding (\$1,	000s)				
Component	Prior	18/19	19/20	20/21	21/22	22/23	23/24+	Total	Funding Agency
E&P (PA&ED)									СТС
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL									
			Proposed F	unding (\$1	,000s)				Notes
E&P (PA&ED)									LPP Formulaic
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON		253						253	
TOTAL		253						253	

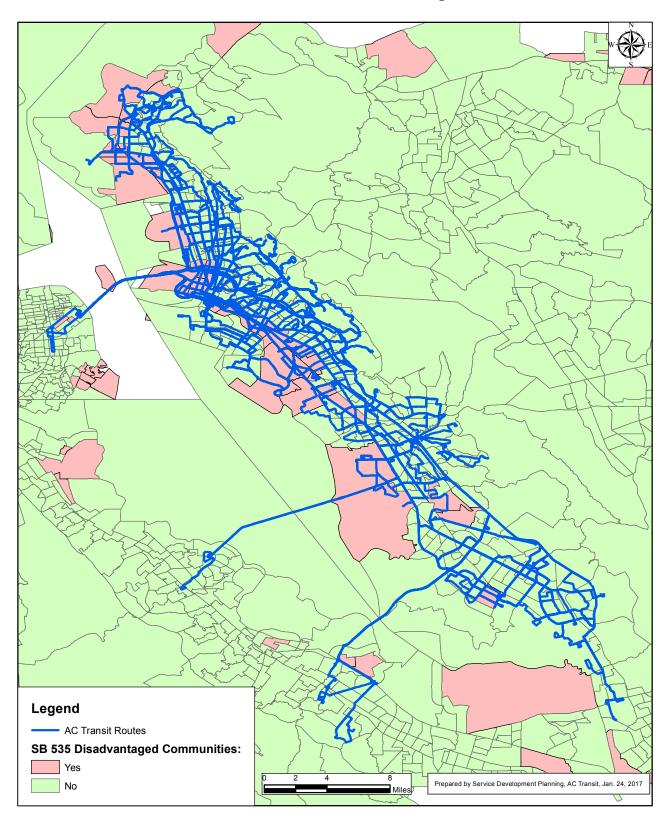
Fund No. 2:									Program Code
			Existing Fu	unding (\$1,	000s)				
Component	Prior	18/19	19/20	20/21	21/22	22/23	23/24+	Total	Funding Agency
E&P (PA&ED)									CTC
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL									
			Proposed F	unding (\$1	,000s)				Notes
E&P (PA&ED)									LPP Competitive
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON			15,000					15,000	
TOTAL			15,000					15,000	

PROJECT PROGRAMMING REQUEST

DTP-0001 (Revised July 2017) Date: 1/26/18


District	County	Route	EA	Project ID	PPNO	Alt Proj. ID
04	ALA	various				
Project Title:	Purchase Hybrid Buses					

Fund No. 3:									Program Code
			Existing F	unding (\$1	,000s)				
Component	Prior	18/19	19/20	20/21	21/22	22/23	23/24+	Total	Funding Agency
E&P (PA&ED)									FTA, MTC, Other
PS&E									
R/W SUP (CT)									
CON SUP (CT)									1
R/W									1
CON									
TOTAL									1
		•	Proposed F	unding (\$1	,000s)		•		Notes
E&P (PA&ED)									FTA 5339, BATA, AB 664,
PS&E									other local match
R/W SUP (CT)									
CON SUP (CT)									
R/W									1
CON			31,947					31,947	1
TOTAL			31,947					31,947	1


Fund No. 4:									Program Code
			Existing F	unding (\$1,	000s)				
Component	Prior	18/19	19/20	20/21	21/22	22/23	23/24+	Total	Funding Agency
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL									
			Proposed I	Funding (\$1	,000s)				Notes
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL									

Fund No. 5:									Program Code
•			Existing F	unding (\$1,	000s)				
Component	Prior	18/19	19/20	20/21	21/22	22/23	23/24+	Total	Funding Agency
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL									
•		•	Proposed I	- Funding (\$1	,000s)	•			Notes
E&P (PA&ED)									
PS&E									
R/W SUP (CT)									
CON SUP (CT)									
R/W									
CON									
TOTAL									

AC Transit Routes & AB 1550 Low-Income Communities

AC Transit Routes & SB 535 Disadvantaged Communities

Local Partnership Program Benefits Forms

Project Information			
Project Title:	Purchase Diesel-Hybrid Buses	Date:	5/1/2020
Project Identifier (EA. PPNO, etc):			

Contact Information			
Nominating Agency:	Alameda-Contra Costa Transit Agency	Agency Completing Form:	Alameda-Contra Costa Transit Agency
Contact Person: Evelyn Ng	Phone: 510 891 5405	Contact Person: Evelyn Ng	Phone: 510 891 5405
Email Address: eng@actransit.org		Email Address: eng@actransit.	org

				Drain	cted	
LPP Indicator	Suggested Measures/Outcomes	Unit	Current	Proje Outcome	cted Year	
	Average Peak Period Vehicle Trips	Time			· Jui	
	Average Daily Vehicle Trips (ADT)	Each				
	Reduction in Daily Vehicle Hours of Delay	Hours				
	Daily VMT per capita	Each				
	Average Peak Period Vehicle Trips Multiplied by the Occupancy Rate	Each				
	Average Daily Vehicle Trips Multiplied by the Occupancy Rate	Each				
	Passengers per Vehicle Revenue Hour	Hours				
Throughput	Passengers per Vehicle Revenue Mile	Miles				
rmougnput	Passenger Mile per Train Mile (Intercity Rail)	Miles				
	Boardings per capita	Each				
	Average Daily Passengers	Each	17,700	18,415	2023	
	In the space below, qualitatively explain the assumptions and methodologies used for proposed throughput outcomes. If another measure(s) is entered under "Other", describe the measur and why other suggested measure(s) were not used. Current passengers based on current ridership. Projected ridership adds 2% increase per year over current ridership, plus average Transbay ridership for 5 additional expansion buses 2023.					
	Fatalities per Vehicle Miles Traveled (VMT) and per capita	Each				
	Fatal Collisions per VMT and per capita	Each				
	Injury Collisions per VMT and per capita	Each				
Safety	Other					
	why other suggested measure(s) were not used.					
	Percentage of population within 1/2 mile of a rail station or bus route.	Percent				
	Average travel time to jobs or school.	Time				
	Other					
Accessibility	In the space below, qualitatively explain the assumptions and methodologies used for and why other suggested measure(s) were not used.	I or proposed accessibility out	I tcomes. If another measure(s)	is entered under "Other",	describe the me	
	Jobs created	Each				
	Benefit/Cost Ratio	Ratio				
nomic Development	Other					
	In the space below, qualitatively explain the assumptions and methodologies used for proposed economic development outcomes. If another measure(s) is entered under "Other", descrimeasure and why other suggested measure(s) were not used.					

Local Partnership Program Benefits Forms

				-	
	Reduction in Particulate Matter (PM2.5)	Tons per year			
	Reduction in Particulate Matter (PM10)	Tons per year	0.01	0	2023
	Reduction in Carbon Dioxide (CO2)	Tons per year	4545		2023
	Reduction in Volatile Organize Compounds (VOC)	Tons per year			
Air Quality and Greenhouse Gas Reductions	Reduction in Sulphur Oxides (SOx)	Tons per year			
Gas Reductions	Reduction in Carbon Monoxide (CO)	Tons per year	0.32	0	2023
	Reduction in Nitrogen Oxide (NOx)	Tons per year	2.71	0	2023
	In the space below, qualitatively explain the assumptions and methodologies used for	proposed emissions reduction	outcomes.		
	Assumptions based on Altoona testing results for a 40-foot diesel hybrid bus in an urban environment in the link below: https://mjbradley.com/sites/default/files/CNG%20Diesel%20Hybrid%20Comparison%20FINAL%2005nov13.pdf				
	Pavement lane miles	Miles			
	Condition of pavement - percentage	Percent			
	Condition of bridge - percentage	Percent			
System Preservation	Replacement of end-of-life buses	Each	40	40	
	In the space below, qualitatively explain the assumptions and methodologies used for measure and why other suggested measure(s) were not used.	proposed System Preservation	outcomes. If another me	easure(s) is entered unde	er "Other", describe the
	This project purchases brand new zero emission buses which replace diesel buses that have reached end of useful life.				
	Travel Time Variability (buffer index)	Time			
	Daily vehicle hours of delay per capita	Hours			
	Daily congested highway VMT per capita	Each			
Reliability	Other				
	the space below, qualitatively explain the assumptions and methodologies used for proposed Reliability outcomes. If another measure(s) is entered under "Other", describe the measure and the suggested measure(s) were not used.				
	Passenger Hours of Delay / Year	Hours			
Mobility	Average Peak Period Travel Time	Time			
	Average Non-Peak Period Travel Time	Time			
	Other In the space below, qualitatively explain the assumptions and methodologies used for proposed Mobility outcomes. If another measure(s) is entered under "Other", describe the measure and why other suggested measure(s) were not used.				