

SURF! Busway and Bus Rapid Transit (BRT) Project

Monterey-Salinas Transit

Early Work Package
And
Long Lead Item
Report

Ballast and Soil Analytical Testing Results
May 23, 2024

By Graniterock-Myers, JV

1. Update

The purpose of this update is to provide the results of the Soil and Ballast testing performed on 4/29/2024.

Enclosed you will find the following:

Ballast environmental data analysis and supporting analytical report.

Soil environmental data analysis and supporting analytical report.

 Project Name:
 MST Ballast
 Lab Report #: 506597

 Project Address:
 Marina through Sand City, CA
 Sample Date: 4/17/2024

License #22	ReGen STLC Trigger mg/kg	Tier 1 2019	Residential 2019	Commercial 2019	GRB 1	GRB 2	GRB 3	GRB 4	GRB 5	GRB 6	GRB 7	GRB 9	GRB 10
Metals 6010B mg/kg Sb - Antimony As - Arsenic	0.6	11 0.067	11 0.067	160 0.31	ND 0.42	ND 2.5	ND 0.76	ND 0.81	ND 15	ND 7	ND 5.5	ND 2	ND 3.4
Ba - Barium Be - Beryllium	100 0.4	390 5	15000 16	220000 230	66 0.091	50 0.092	38 0.082	27 0.057	14 0.12	100 0.17	18 0.13	49 0.1	15 0.097
Cd - Cadmium Cr - Chromium (Total) Co - Cobalt	0.5 5 5	1.9 160 23	78 - 23	1100 - 350	ND 5.8 10	0.045 15 8.1	ND 8.9 13	ND 8.9 9.5	0.22 12 2.2	0.13 24 6.4	0.1 30 5.2	ND 15 6.5	0.079 18 2.5
Cu - Copper Pb - Lead Hq - Mercury (7471B)	200 5 0.2	180 32 13	3100 80 13	47000 320 190	100 7.2 0.057	71 40 0.041	88 14 ND	88 22 ND	16 12 ND	40 4.8 0.24	30 7 0.052	50 8 0.091	9.5 4.9 0.071
Mo - Molybdenum Ni - Nickel	1 10	6.9 86	390 820	5800 11000	343 2.9	0.9 9.2	0.43 4.1	0.56 4.9	0.53 10	0.67 35	0.78 25	0.34 7.7	0.3 12
Se - Selenium Ag - Silver TI - Thallium	1 5 0.05	2.4 25 0.78	390 390 0.78	5800 5800 12	1.5 ND ND	1.2 ND ND	1.9 ND ND	1.1 ND ND	ND ND ND	0.94 ND ND	0.86 ND ND	0.93 ND ND	ND ND ND
V - Vanadium Zn - Zinc	2 2000	18 340	390 23000	5800 350000	120 29	90 40	150 38	94 30	15 35	47 50	31 17	70 24	22 13
TPH 8260TPH mg/kg TPHg TPH 8015B mg/kg		100	430	2000	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPHd TPHmo Pesticides 8081B ug/kg		260 1600	260 12000	1200 200000	ND ND	44 120	4.1	4.8 5.4	27 30	630 540	11 10	7.9 9.1	6.7 6.5
Alpha BHC (Alpha Hexachlorocyclohexane) Beta Bhc (Beta Hexachlorocyclohexane)					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Delta Bhc (Delta Hexachlorocyclohexane) Gamma Bhc (Lindane) Heptachlor		7.4 120	550 120	25000 530	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Aldrin Heptachlor Epoxide Endosulfan I		2.4 0.18 9.8	35 620 419510	150 280 5783990	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Dieldrin 4,4-DDE		0.46 330	37 1800	160 8300	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endrin Endosulfan II Endosulfan Sulfate		1.1 	21000 419510 	290000 5783990 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
4,4-DDD Endrin Aldehyde Endrin Ketone		2700 	2700 	12000 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
4,4-DDT Methoxychlor		1.1 13	1900 350000	8500 4800000	ND ND	4.8 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toxaphene Chlordane PCBs 8082A ug/kg		510 8.5	510 480	2200 2200	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor1016 Aroclor1221 Aroclor1232		230 230 230	230 230 230	230 230 230	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Aroclor1242 Aroclor1248		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor1254 Aroclor1260 Aroclor1262		230 230 230	230 230 230	230 230 230	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Aroclor1268 Total PCBs VOCs 8260B ug/kg		230 230	230 230	230 940	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0	ND 0
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		17 7000	2000 1700000	8900 7300000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloroethane		18 76	610 1200	2700 5100	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene		200 540	3600 83000 	16000 350000 	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		0.11	 23	 110	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane		1200 0.59	24000 4.4	110000 59	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene		0.53 1000	36 1800000	160 9400000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene)		7 65 	470 1000 	2100 4400 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene		6000 17 200	 100 2600	 300 12000	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,4 - Dioxane 2,2-Dichloropropane (2,2-DCP)		0.17	812290 	4541690 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Butanone 2-Chlorotoluene 2-Hexanone (MBK)					ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
4-Chlorotoluene Acetone Benzene		920 25	61,000,000 330	 670,000,000 1400	ND ND ND	ND ND 2.7	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Bromobenzene Bromochloromethane					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromodichloromethane (BDCM) Bromoform Bromomethane		16 690 360	290 18000 6900	1300 80000 30000	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride		 76	 620	 2700	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Chlorobenzene Chloroethane		1400 1200	270,000 14000000	1300000 59000000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroform Chloromethane cis-1,2-Dichloroethene		23 11000 190	320 110000 19000	1400 470000 85000	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
cis-1,3-Dichloropropene Cymene Dibromochloromethane (DBCM)		 350	 8300	 39000	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Dibromomethane Dichlorodifluoromethane					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-isopropyl ether (DIPE) Ethyl Tert-Butyl Ether (ETBE) Ethylbenzene		 430	 5900	 26000	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Freon 113 Hexachlorobutadiene Hexachloroethane		 28 19	1200 1800	 5300 7800	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Isopropyl Ether Isopropylbenzene (Cumene)					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m,p-Xylene Methyl Ethyl Ketone (2- Butanone) Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)		6100 360	27000000 34000000	20000000 14000000	ND ND ND	1.4 ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Methylene chloride Methly mercury Methyl tert-butyl ether (MTBE)		120 34 28	1900 6320 15621960	25000 82070 65612250	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Naphthalene n-Butylbenzene		42 	3800	17000 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Propylbenzene o-Xylene (1,2- Dimethylbenzene) sec-Butyl Benzene		 	 	 	ND ND ND	ND 0.8 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Styrene tert-Butylbenzene tert-Butyl alcohol		920 75	5700000 	33000000 	ND ND ND	4.5 ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
tert-Butyl Methyl Ether Tetrachloroethene (PCE)		28 80	47000 590	210000 2700	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p-Isopropyitoluene tert-Amyl methyl ether (TAME) Trichloroethene		 1200	 4160	 18940	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Toluene Xylenes (Total) Trans-1,2-Dichloroethene (trans-1,2-DCE)		3200 2100 650	1100000 580000 130000	5300000 2500000 600000	ND ND ND	4.8 7 ND	ND 0 ND	ND 0 ND	ND 0 ND	ND 0 ND	ND 0 ND	ND 0 ND	ND 0 ND
Trans-1,3-Dichloropropene (trans-1,3-DCP) Trichloroethylene (TCE)		 85	 950	 6100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane Vinyl Chloride PAHs 8270C-SIM ug/kg		1.5	8.3	 150	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1-Methylnaphthalene 2-Methylnaphthalene		 880	 240000	 3013780	ND ND	35 50	ND ND	ND ND	11 22	ND ND	ND ND	ND 3	ND ND
Naphthalene Acenaphthylene		42 64000	3800 	584540 	ND ND	50 21	ND ND	ND ND	45 7.3	ND ND	ND 15	ND ND	ND ND
Acenaphthene Fluorene		12000 6000	3600000 2400000	45206720 30137810	ND ND	ND ND	ND ND	ND ND	9.7	ND ND	ND ND	ND ND	18 23
Phenanthrene Anthracene Fluoranthene		7800 1900	 18000000 240000	226033600 30137810	ND ND ND	49 33 140	6 2.7	6.1 3.6 28	26 20	ND ND	5.8 40 19	4.6 3.5	220 130 750
Fluoranthene Pyrene Benz[a]anthracene		690 45000 630	2400000 1800000 1100	30137810 22603360 20000	ND ND ND	94 43	19 12 3.9	28 11 3.1	19 ND 4.6	ND ND ND	19 20 6.5	4.9 6.9 1.8	750 900 400
[a]ananaoono	<u>I</u>	ხას	1100	20000	רואר		J.J	J. 1	7.0	ואט	0.3	1.0	

Chrysene	-	1100		4	150	20	7.9	11	ND	13	3.4	750
Benzo[b]fluoranthene	1100	1100		7.1	340	35	15	45	ND	46	6.8	600
Benzo[k]fluoranthene	1100	1100		7.1	87	10	4.3	12	ND	11	1.9	240
Benzo[a]pyrene	110	110	2100	2.3	50	4.1	3.7	61	ND	30	2.4	220
Indeno[1,2,3-cd]pyrene	480	1100		ND	80	9.5	4.8	12	ND	43	3.7	180
Dibenz[a,h]anthracene	110	110		ND	18	ND	ND	ND	ND	6.5	ND	36
Benzo[g,h,i]perylene	2500	-		1.7	77	99	6.9	17	ND	43	6.9	200
PAH, Total	-			22.2	1317	221.2	94.4	342.6	0	298.8	49.8	4667
Asbestos %												
CARB 435A	-	-		ND			ND		ND		ND	

ND = Non-Detect
-- = Value not established
- = Not tested
STLC Result (CA Title 22 Trigger Level reached)
STLC Required for ReGen Monterey Landfill
Over Residential ESLs; OK for Commercial/Industrial
* Values highlighted indicate an exceedance for corresponding screening levels.

Project Name: MST Ballast
Project Address: Marina through Sand City, CA

Lab Report #: 506597 Sample Date: 4/17/2024

Second	License #22	ReGen STLC Trigger mg/kg	Tier 1 2019	Residential 2019	Commercial 2019	GRB 10	GRB 11	GRB 12	GRB 13	GRB 14	GRB 15	GRB 16	GRB 17
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Metals 6010B mg/kg Sb - Antimony	0.6											
Company	Ba - Barium	100	390	15000	220000	35	18	19	12	49	45	71	36
Company	Cd - Cadmium	0.5	1.9	78	1100	0.083	0.15	0.11	0.17	ND	ND	0.68	0.34
1. 1. 1. 1. 1. 1. 1. 1.	Cr (STLC), mg/L					-	-	-	-	-	-	0.15	-
Americans													53
The column 1	, , ,	0.2	13	13	190	0.098	0.067	0.075	0.05	0.092	0.077	0071	3.3
1. Section 1	Mo - Molybdenum	1	6.9	390	5800	0.76	0.94	0.25	ND	0.28	0.34	0.52	0.39
Teacher 150	Se - Selenium	1	2.4	390	5800	1.3	0.8	ND	ND	1.2	1.3	1.3	0.78
Company Comp	TI - Thallium	0.05	0.78	0.78	12	ND	ND	ND	ND	ND	ND	ND	ND
The column		2000		23000	350000				14				1000
Section 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	TPHg TPH 8015B mg/kg												
W. Series	TPHmo												
Self-Spider Company	Alpha BHC (Alpha Hexachlorocyclohexane)												
SECURITY OF A STATE OF	Delta Bhc (Delta Hexachlorocyclohexane)					ND	ND	ND	ND	ND	ND	ND	ND
1	Heptachlor			120	530	ND	ND	ND	ND	ND	ND	2.9	ND
A	Endosulfan I		9.8	419510	5783990	ND	ND	ND	ND	ND	ND	ND	ND
1.	4,4-DDE		330	1800	8300	ND	ND	ND	ND	ND	ND	ND	ND
1.64 1.65	Endosulfan II			419510	5783990	ND	ND	ND	ND	ND	ND	ND	ND
The color of the	4,4-DDD		2700	2700	12000	ND	ND	ND	ND	ND	ND	ND	ND
Margarian	Endrin Ketone		1.1	 1900	 8500	ND ND	ND ND	ND ND	ND ND	ND 2.1	ND ND	ND ND	ND ND
Column	Toxaphene		510	510	2200	ND ND	ND	ND	ND	ND	ND	ND	ND
1.00 1.00	PCBs 8082A ug/kg												
Section	Aroclor1221		230	230	230	ND	ND	ND	ND	ND	ND	ND	ND
Society 19	Aroclor1242		230	230	230	ND	ND	ND	ND	ND	ND	ND	ND
March Marc	Aroclor1254 Aroclor1260		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 64
Value Valu	Aroclor1262 Aroclor1268		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
1.1.1.	VOCs 8260B ug/kg												
11 State 12 State 13 State 14 State 15	1,1,1-Trichloroethane		7000	1700000	7300000	ND	ND	ND	ND	ND	ND	ND	ND
1.650cm/com/com/com/com/com/com/com/com/com/c	1,1,2-Trichloro-1,2,2- Trifluoroethane		-			ND	ND	ND	ND	ND	ND	ND	ND
17-10 17-1						ND	ND	ND	ND	ND	ND	ND	
1.56 1.56	1,2,3-Trichlorobenzene		-		-	ND	ND	ND	ND	ND	ND	ND	ND
1-58 1-50	1,2,4-Trichlorobenzene		1200	24000	110000	ND	ND	ND	ND	ND	ND	ND	ND
12 Debroomerer	1,2-Dibromo-3- Chloropropane		0.59	4.4	59	ND	ND	ND	ND	ND	ND	ND	ND
1-5 From Printer P	1,2-Dichlorobenzene			1800000	9400000	ND	ND	ND	ND	ND	ND	ND	ND
15 Demonstragemen						ND	ND ND	ND	ND ND	ND	ND	ND	ND
14. Decame 14. Decame 15.	1,3-Dichloropropene		17	100	300	ND	ND	ND	ND	ND	ND	ND	ND
2 Statemer	1,4 - Dioxane		0.17	812290	4541690	ND	ND	ND	ND	ND	ND	ND	ND
2	2-Butanone				-	ND	ND	ND	ND	ND	ND	ND	ND
March Marc	2-Hexanone (MBK)					ND	ND	ND	ND	ND	ND	ND	ND
Commontementary	Acetone					ND ND	ND ND	ND	ND	ND	ND	ND	ND
Billione	Bromochloromethane				-	ND	ND	ND	ND	ND	ND	ND	ND
Blasses Asherbergs	Bromoform		690	18000	80000	ND	ND	ND	ND	ND	ND	ND	ND
Carbon streamlands 76 600 27000 NO NO NO NO NO NO NO	Butane, 2-Methoxy-2- Methyl					ND	ND	ND	ND	ND	ND	ND	ND
Chlosorhame	Carbon tetrachloride		76	620	2700	ND	ND	ND	ND	ND	ND	ND	ND
Citizonethane	Chloroethane		1200	14000000	59000000	ND	ND	ND	ND	ND	ND	ND	ND
Cymene	Chloromethane cis-1,2-Dichloroethene		11000 190	110000 19000	470000 85000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Debroomethane	Cymene				-	ND	ND	ND	ND	ND	ND	ND	ND
Di-Bosporgo (Pierr (DIPE) Di-Bosporgo (Pierr (D	Dibromomethane					ND	ND	ND	ND	ND	ND	ND	ND
Ethybenzene	Di-isopropyl ether (DIPE)					ND	ND	ND	ND	ND	ND	ND	ND
Hexachiorobustadeine	Ethylbenzene Freon 113		430	5900 	26000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Soprogyleherane (Cumeno)	Hexachlorobutadiene Hexachloroethane		28 19	1200 1800	7800	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methy Etry Ketone (2- Butanone)	Isopropylbenzene (Cumene)					ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	Methyl Ethyl Ketone (2- Butanone)		6100	27000000	200000000	ND	ND	ND	ND	ND	ND	ND	ND
Methylater (MTBE)	Methylene chloride		120	1900	25000	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	Methyl tert-butyl ether (MTBE)		28	15621960	65612250	ND	ND	ND	ND	ND	ND	ND	ND
Sec_Butyl Benzene	n-Butylbenzene n-Propylbenzene					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
tert-Butylbenzene - - - - ND	sec-Butyl Benzene		_	-	-	ND	ND	ND	ND	ND	ND	ND	ND
Tetra-Butyl Methyl Ether	tert-Butylbenzene					ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	tert-Butyl Methyl Ether		28	47000	210000	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	p-Isopropyltoluene					ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total) 2100 580000 2500000 ND ND ND ND ND ND ND	Trichloroethene		1200	4160	18940	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,3-Dichloropropene (trans-1,3-DCP)	Xylenes (Total)		2100	580000	2500000	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl Chloride 1.5 8.3 150 ND	Trans-1,3-Dichloropropene (trans-1,3-DCP) Trichloroethylene (TCE)					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1-Methylnaphthalene ND	Trichlorofluoromethane Vinyl Chloride		-	-	-	ND	ND			ND			
2-Methylnaphthalene 880 240000 3013780 2.7 3.2 ND ND ND ND ND ND ND ND ND	1-Methylnaphthalene												

Naphthalene	42	3800	584540	6.6	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	64000			ND	14	52	11	ND	ND	ND	ND
Acenaphthene	12000	3600000	45206720	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	6000	2400000	30137810	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	7800		-	11	6.7	29	5.1	ND	ND	5.5	4.6
Anthracene	1900	18000000	226033600	5.9	31	86	34	2.3	ND	3.3	1.7
Fluoranthene	690	2400000	30137810	17	20	88	10	ND	3.4	11	6.9
Pyrene	45000	1800000	22603360	9.5	26	75	9.2	ND	3.9	11	6.5
Benz[a]anthracene	630	1100	20000	3.3	15	27	6.5	1.2	1.4	4.2	1.9
Chrysene		1100	-	7.8	18	47	7.1	2.4	2.6	12	4.3
Benzo[b]fluoranthene	1100	1100	-	12	60	120	92	4.2	4.6	23	7.9
Benzo[k]fluoranthene	1100	1100	-	3.1	19	35	48	1.2	1.3	6.7	2.3
Benzo[a]pyrene	110	110	2100	3	36	43	27	2.1	2.3	6.7	2.6
Indeno[1,2,3-cd]pyrene	480	1100	-	5.3	74	93	35	2.9	3	11	5.3
Dibenz[a,h]anthracene	110	110	-	ND	11	20	7.1	ND	ND	ND	ND
Benzo[g,h,i]perylene	2500		-	7	120	140	26	5.3	6.1	14	9.5
PAH, Total			-	94.2	453.9	855	318	21.6	28.6	108.4	53.5
Asbestos %											
CARB 435A			-		ND		ND		ND		ND

ND = Non-Detect
-- = Value not established
- = Not tested
STLC Result (CA Title 22 Trigger Level reached)
STLC Required for ReGen Monterey Landfill
Over Residential ESLs; OK for Commercial/Industria
* Values highlighted indicate an exceedance for corresponding screening levels

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 506597

Report Level : II

Report Date : 05/01/2024

Analytical Report prepared for:

Lisa Prasad Graniterock 350 Technology Dr Watsonville, CA 95076

Project: 8133 - MST Ballast

Authorized for release by:

Miguel Gamboa, Project Coordinator miguel.gamboa@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Lisa Prasad

Graniterock

350 Technology Dr

Watsonville, CA
95076

Lab Job #: 506597

Project No: 8133

Location: MST Ballast

Date Received: 04/17/24

Sample ID	Lab ID	Collected	Matrix
GRB 1	506597-001	04/17/24 11:20	Soil
GRB 2	506597-002	04/17/24 11:23	Soil
GRB 3	506597-003	04/17/24 11:26	Soil
GRB 4	506597-004	04/17/24 11:29	Soil
GRB 5	506597-005	04/17/24 11:35	Soil
GRB 6	506597-006	04/17/24 11:39	Soil
GRB 7	506597-007	04/17/24 11:57	Soil
GRB 8	506597-008	04/17/24 11:59	Soil
GRB 9	506597-009	04/17/24 12:04	Soil
GRB 10	506597-010	04/17/24 12:07	Soil
GRB 11	506597-011	04/17/24 12:14	Soil
GRB 12	506597-012	04/17/24 12:35	Soil
GRB 13	506597-013	04/17/24 12:37	Soil
GRB 14	506597-014	04/17/24 12:53	Soil
GRB 15	506597-015	04/17/24 12:55	Soil
GRB 16	506597-016	04/17/24 12:59	Soil
GRB 17	506597-017	04/17/24 13:03	Soil

Case Narrative

Graniterock 350 Technology Dr Watsonville, CA 95076 Lisa Prasad Lab Job 506597 Number:

Project No: 8133

Location: MST Ballast Date Received: 04/17/24

- This data package contains sample and QC results for seventeen soil samples, requested for the above referenced project on 04/17/24. The samples were received cold and intact.
- Report reissued on 5-1-2024 to include STLC and asbestos results.

TPH-Extractables by GC (EPA 8015M):

- Low surrogate recovery was observed for n-triacontane in the MS for batch 338680; the parent sample was not a project sample. High surrogate recovery was also observed for n-triacontane in the MSD for batch 338680.
- GRB 6 (lab # 506597-006) was diluted due to the dark color of the sample extract.
- No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM):

- Many samples were diluted due to the dark and viscous nature of the sample extracts.
- No other analytical problems were encountered.

Pesticides (EPA 8081A):

- GRB 6 (lab # 506597-006) was diluted due to the color of the sample extract.
- No other analytical problems were encountered.

PCBs (EPA 8082):

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A) Soil:

- Low recoveries were observed for antimony in the MS/MSD of GRB 1 (lab # 506597-001); the LCS was within limits, and the associated RPD was within limits.
- Copper was detected between the MDL and the RL in the method blank for batch 338460; this analyte was detected in samples at a level at least 10 times that of the blank.
- No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7470A) WET Leachate:

No analytical problems were encountered.

Moisture (ASTM D2216):

No analytical problems were encountered.

Asbestos (CARB 435):

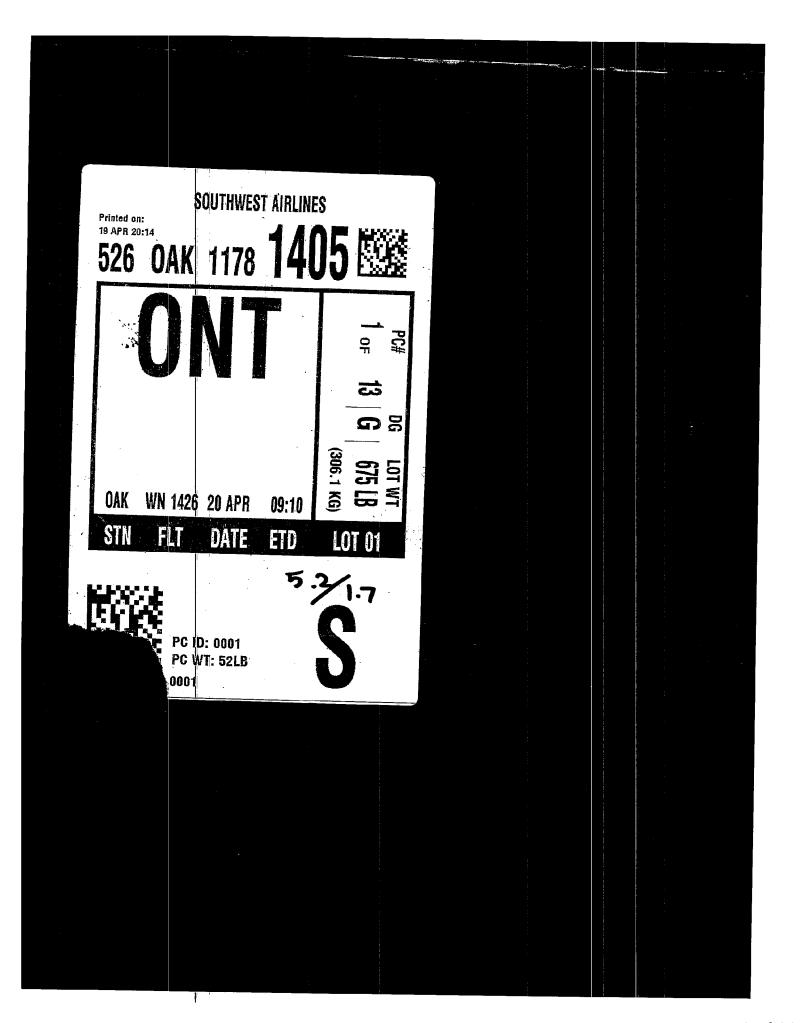
SGS Forensic in Hayward, CA performed the analysis (see sublab report section for certifications). Please see the SGS Forensic case narrative.

			4	_	Ú	1	[ı		ŀ				
<u> </u>	* *		1	_	Lab No:	りついる		<u>s</u>	Standard:		<u> </u>	5 Day:	3 Day:	
En				L Page:	:a	\mathcal{L} of	F 2		2 Day:			1 Day:	Custom TAT:	
. •	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710	- Berkeley 7, CA 94710			Matrix: W = Water DW	Matrix: A = Air S = Soil/Soild fater DW = Drinking Wate SD = Sediment	S = Soil/Solid ng Wate SD = Secondary	/Solid SD = Sed	iment	1. 4 = 1.	Pre Va ₂ S ₂ O ₃ I ₂ SO ₄ 5	Preservatives: $1 = \text{Na}_2\text{S}_2\text{O}_3$ $2 = \text{HCl}$ $3 = \text{HNO}_3$ $4 = \text{H}_3\text{CO}_3$ $5 = \text{NaOH}$ $6 = \text{Other}$		Sample Receipt Temp:
	Phone 510-486-0900	006			SW = Swab			>	o = Other	-	, 400%			(lab use only)
CUSTON	CUSTOMER INFORMATION		PF	(OJECT IN	PROJECT INFORMATION	N		4	Analysis Request	quest		Test In	Test Instructions / Comments	nments
Company: Graniterock	erock	N	Name: -	ХУ	T Ball	((os+				-		Please also ru	Please also run STLC/TCLP on results over	results over
Report To: Lisa Prasad	asad	ž	Number:	8	133			NRO	168	170	(1	IITIE 22 TUX &	litle 22 10X & 20X trigger levels.	Š
Email: Lpras	Lprasad@graniterock.com		P.O. #:					N/OЯ	J0/ F	ne /*	idgiə'			
	350 Technology Dr.	Ä	Address:					a) Ha	0001	ana)	W VIC			
Watso	Watsonville, CA 95076													
Phone: 831-76	831-768-2000	פו	Global ID:							d				
		Sa	Sampled By:							nueə				
Samp	Sample ID	Sampling Date	Sampling Time	ng Matrix	trix Container No. / Size	iner Pres. Size	∠τ MA⊃	TPH (DRO	AOCs	OCP (Pes Florisil Cl	Asbestos AnteioM			
1 GRB 11		47-17-74	1234	1.50	1 (602) 90	7	-		ļ		イン			
2 GKB 12		4	12:35	-لد	\vdash	_								
3 GRB 13			12:37	_92	tallest									
4 GRB 14			ES:21											
5 GRB 15			12:55								×			
6 GRB 16			12:59											
7 GRB 17			13:03	\	\		≯	7	<u>₹</u>	<u>\</u>	7			
∞					>					+				
9 10		>					-							
	S	Signature			Print Name	- - -	1	ت ا	Company /	/Title			Date / Time	
¹ Relinquished By:	8			Lisa	lasal		62	antrock	7730	5	NQ	hz-61-h		18:35
¹ Received By:	Mulary	the dogs)	Anode	onto ha	Chusan	. 43	ENTHA	BY	_		4/4/4	7 15'	35
² Relinquished By:	Quelotal	Shoologa	4		/	M	11		>			4/14/2	1/2/ 4	P2,
² Received By:	AHT	P		TONC	7を対	150V	77.3	4	K			4.17.20	(5/;	HO
³ Relinquished By:	TC 1	7 7		Kenne	eth High	K	11	A	<u> </u>			4/19/2	9 h	$\tilde{\lambda}$
³ Received By:	J. Ch	whyler		705	BURT	Contra	None	Ü	₹			77.50	yan,	<i>(03</i> 2)

	SAMPLE RECEIPT CHECKLIST		-	
Castian 4. Canaval Infa	SAME LE REGERT GILLOREIST			
Section 1: General Info ムカフンル	Login # 506597 Client: GTanteRock		ENT	HALPY
Date Received: 1.11.01	Login # 306311 Client: GIANIERO			11111
Section 2: Shipping / Custo	dy '			
Shipping Info:				
Are custody seals present?	☑ No ☐ Yes If yes, where? ☐ on cooler, ☐ on samples, ☐ on p	oackage		
Custody seals intact on arriv	al? 🗆 Yes 🗖 No 🔎 N/A Date: # of seals 🗖 Signa] Initials	
Date Opened 4.17.24 B	reging Jagz Ero Son (sign) M if temperature exceeds of the son (sign) M			
	ived on ice directly from the field. Cooling process had begun. (if checked, skip	tempera	atures)	
If no cooler: Sample Temp (,	
	Temp (°C): #1: #2:#3:#4:#5:	#6:		
	ng □ Thermometer ID:, or IR Gun # □ B □ C	~ 771	9 4 172	1
		- V 200-E	~∵~~ ~™≈≈	i
Section 4: Containers / Lab		YES	NO	N/A
	lled out properly, and the project identifiable?	165	- NC	11/7
	g containers present? Transferred to freezer @:			,
Did all containers arrive unb				
Are there any missing / extr				
	ate containers for indicated tests?			
	n good condition and complete?			
Does the container count m				
Do the sample labels agree				
L	mple sent for tests requested?			
	e in LIMS for unpreserved VOAs?			_
	ne in LIMS for preserved terracores?			_
Are bubbles > 6mm present				
	out this delivery? Contacted: By: Date:			
Section 5: Preservatives		YES	NO	N/A
	ely preserved? (if yes, skip the rest of section 5)			
	s require preservation upon receipt?			
Did you document your pre	servative check in the bench book?	<u> </u>		
Preservative added:	· · ·			
☐ H2SO4 lot#				
☐ HCL lot#	added to samplesDate/Time			
☐ HNO3 lot#	added to samplesDate/Time			
☐ CrVI Buffer lot#	added to samples Date/Time			
Section 6: Explanations / C	samples will require crushly for	T GA	alysi	<u> </u>
Date Logged <u>4.17.3</u> Date Labeled <u>4.17.3</u>				

Enthalpy Analytical - Berkeley

6 of 99


Rev.15.1, 09/13/2019

SAMPLE ACCEPTANCE CHECKLIST

Section 1					
Client: Graniteroc		Project: MST			
Date Received: <u>4/</u>	20/24	Sampler's Name Present:	Yes	No	
Section 2					
	d in a cooler? Yes, How many? 2	NO (skin section 2)		e Temp (°C)	
	, One from each cooler: #1: <u>ろ.3</u>		#4:	(No Cooler)	
	6°¢ but not frozen (for Microbiology samples, accepta			for sample	- s collected
the .	ame day as sample receipt to have a higher temperote				
Shipping Informa	rion:				
Section 3					
Was the cooler p		 : :	ofoam		
Caplan Tarrey (20)	#1: \.\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Other	#4.		
Cooler Temp (°C)	#1: <u>\.\\</u> #2: \.\-\	#3:	#4:		
Section 4			YES	NO	N/A
Was a COC receiv					Se Excluded Constitution of
Are sample IDs p					20 mag 2 da 14 da 1
	es & times present?		· ·		
	ignature present?		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		16 m (1922) 18 m (1924)
Are the tests requ Are custody seals	present?		<i>\\</i>		
	present? eals are present, were they intact?		<u> </u>		
	aled in plastic bags? (Recommended for	or Microbiology samples)			<i>\</i>
	rive intact? If no, indicate in Section 4 b		· /		
	Is agree with COC? (ID, dates and times		1		
	s collected in the correct containers for		V		
Are the con	tainers labeled with the correct preserv	atives?			/
	e in the VOA vials greater than 5-6 mm				<u>, </u>
Was a sufficient a	mount of sample submitted for the req	uested tests?	<u> </u>	<u> </u>	
Section 5 Expla	nations/Comments		1	ļ	
506597	:				
SEE	BERKELEY COOLER SHEET				
	: 1				
Section 6			1		
	, how was the Project Manager notified	? Verbal PM initials:	Date/Time		
•	,	Email (email sent to		/	
Project Manager	s response:	_ _			
	100				
Completed By:	for Vinleyea	Date: 4/26/24			
-	Enthalpy Analytical, a subsidiary of N	Aontrosa Environmental Grove In-			
	931 W. Barkley Ave, Orange, CA 92868)9		
	www.enthalp				
	Sample Acceptance Che	ELNISL ~ NEV 4, 0/0/2V1/			

Lisa Prasad Graniterock 350 Technology Dr Watsonville, CA 95076 Lab Job #: 506597 Project No: 8133 Location: MST Ballast Date Received: 04/17/24

Sample ID: GRB 1	Lab ID: 506597-001	Collected: 04/17/24 11:20
	Matrix: Soil	Basis: Dry

		ivia	llix. Jui				D	asis. Diy		
506597-001 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	ND		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	0.85	0.97	338460	04/22/24	04/23/24	SBW
Arsenic	0.42	J	mg/Kg	0.97	0.25	0.97	338460	04/22/24	04/23/24	SBW
Barium	66		mg/Kg	0.97	0.077	0.97	338460	04/22/24	04/23/24	SBW
Beryllium	0.091	J	mg/Kg	0.49	0.0061	0.97	338460	04/22/24	04/23/24	SBW
Cadmium	ND		mg/Kg	0.49	0.035	0.97	338460	04/22/24	04/23/24	SBW
Chromium	5.8		mg/Kg	0.97	0.22	0.97	338460	04/22/24	04/23/24	SBW
Cobalt	10		mg/Kg	0.49	0.22	0.97	338460	04/22/24	04/23/24	SBW
Copper	100		mg/Kg	0.97	0.14	0.97	338460	04/22/24	04/23/24	SBW
Lead	7.2		mg/Kg	0.97	0.25	0.97	338460	04/22/24	04/23/24	SBW
Molybdenum	0.43	J	mg/Kg	0.97	0.11	0.97	338460	04/22/24	04/23/24	SBW
Nickel	2.9		mg/Kg	0.97	0.12	0.97	338460	04/22/24	04/23/24	SBW
Selenium	1.5	J	mg/Kg	2.9	0.52	0.97	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.49	0.060	0.97	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.33	0.97	338460	04/22/24	04/23/24	SBW
Vanadium	120		mg/Kg	0.97	0.050	0.97	338460	04/22/24	04/23/24	SBW
Zinc	29		mg/Kg	4.9	0.23	0.97	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	0.057	J	mg/Kg	0.15	0.037	1.1	338476	04/23/24	04/23/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338396	04/22/24	04/23/24	TJW
DRO C10-C28	ND		mg/Kg	10	3.4	1	338396	04/22/24	04/23/24	TJW
ORO C28-C44	ND		mg/Kg	20	3.4	1	338396	04/22/24	04/23/24	TJW
Surrogates				Limits						
n-Triacontane	104%		%REC	70-130		1	338396	04/22/24	04/23/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.0	0.99	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.0	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.0	1.0	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.0	1.2	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.0	1.7	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.0	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.0	1.4	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.0	1.5	1	338386	04/22/24	04/23/24	MES
2.3.4			-9'''8			•				

	•	¬ııaı y	313 11	esuits	101 30	,000				
506597-001 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4,4'-DDE	ND		ug/Kg	5.0	1.5	1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.0	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.0	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	5.0	2.1	1	338386	04/22/24	04/23/24	MES
4,4'-DDD	ND		ug/Kg	5.0	0.93	1	338386	04/22/24	04/23/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND		ug/Kg	5.0	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND		ug/Kg	5.0	1.7	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND		ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND		ug/Kg	100	31	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND		ug/Kg	50	9.1	1	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
TCMX	65%		%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	47%		%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082										
Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	50	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND		ug/Kg	50	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND		ug/Kg	50	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND		ug/Kg	50	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND		ug/Kg	50	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND		ug/Kg	50	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND		ug/Kg	50	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND		ug/Kg	50	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND		ug/Kg	50	14	1	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
Decachlorobiphenyl (PCB)	62%		%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B										
Prep Method: EPA 5030B										
Freon 12	ND		ug/Kg	250	130	50	338582	04/24/24	04/24/24	HMN
Chloromethane	ND		ug/Kg	250	180	50	338582	04/24/24	04/24/24	HMN
Vinyl Chloride	ND		ug/Kg	250	81	50	338582	04/24/24	04/24/24	HMN
Bromomethane	ND		ug/Kg	250	190	50	338582	04/24/24	04/24/24	HMN
Chloroethane	ND		ug/Kg	250	130	50	338582	04/24/24	04/24/24	HMN
Trichlorofluoromethane	ND		ug/Kg	250	99	50	338582	04/24/24	04/24/24	HMN
Acetone	ND		ug/Kg	5,000	1,900	50	338582	04/24/24	04/24/24	HMN
Freon 113	ND		ug/Kg	250	69	50	338582	04/24/24	04/24/24	HMN
1,1-Dichloroethene	ND		ug/Kg	250	64	50	338582	04/24/24	04/24/24	HMN
Methylene Chloride	ND		ug/Kg	1,000		50	338582	04/24/24	04/24/24	HMN
MTBE	ND		ug/Kg	250	66	50	338582	04/24/24	04/24/24	HMN
trans-1,2-Dichloroethene	ND		ug/Kg	250	49	50	338582	04/24/24	04/24/24	HMN
1,1-Dichloroethane	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	HMN
2-Butanone	ND		ug/Kg	5,000	280	50	338582	04/24/24	04/24/24	HMN
cis-1,2-Dichloroethene	ND		ug/Kg	250	59	50	338582	04/24/24	04/24/24	HMN
2,2-Dichloropropane	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	HMN
Chloroform	ND		ug/Kg	250	78	50	338582	04/24/24	04/24/24	HMN
Bromochloromethane	ND		ug/Kg	250	68	50	338582	04/24/24	04/24/24	HMN
1,1,1-Trichloroethane	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	HMN
1,1-Dichloropropene	ND		ug/Kg	250	68	50	338582	04/24/24	04/24/24	HMN
Carbon Tetrachloride	ND		ug/Kg	250	56	50	338582	04/24/24	04/24/24	HMN
1,2-Dichloroethane	ND		ug/Kg	250	98	50	338582	04/24/24	04/24/24	HMN
1,2-Dichioroethane	טוו		ug/rtg	200	90	30	330302	U4/24/24	U4/24/24	I IIVII V

ND ND ND ND	ug,	/Kg /Kg	250 250	33 38	50 50	338582 338582	04/24/24	04/24/24	HMN
ND ND	ug	-		38	50	338283	04/04/04	0.4/0.1/2.	
ND	-	/Ka					04/24/24	04/24/24	HMN
		ity	250	31	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	40	50	338582	04/24/24	04/24/24	HMN
	ug,	/Kg	250	55	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	85	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	44	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	51	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	57	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	33	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	43	50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	250	37	50	338582	04/24/24	04/24/24	HMN
ND	ug	/Kg	250	41	50	338582	04/24/24	04/24/24	HMN
ND	ug	/Kg	250	31	50	338582	04/24/24	04/24/24	HMN
ND			250	46	50	338582	04/24/24	04/24/24	HMN
ND			250	57	50	338582	04/24/24	04/24/24	HMN
ND	_	-	250	54	50	338582	04/24/24	04/24/24	HMN
ND	_	-	500	120	50	338582	04/24/24	04/24/24	HMN
	-	-			50			04/24/24	HMN
	-	-							HMN
									HMN
	-	-							HMN
									HMN
	-	-							HMN
	-	-							HMN
	_	-							HMN
	-	-							HMN
	-	-							HMN
									HMN
	-	-							HMN
									HMN
		-							HMN
	-	-							HMN
	_	-							HMN
	-	-							HMN
	-	-							HMN
	-	-							HMN
	-	-							HMN
									HMN
	-	-							HMN
	-	-							HMN
ND	ug,	/Kg		58	50	338582	04/24/24	04/24/24	HMN
								0.1/0.1/0.1	
									HMN
									HMN
									HMN
100%	%F	REC	70-145		50	338582	04/24/24	04/24/24	HMN
ND	ug,	/Kg	9.9	1.5	0.99	338434	04/22/24	04/23/24	DJL
ND	ug	/Kg	9.9	1.5	0.99	338434	04/22/24	04/23/24	DJL
	ND ND ND ND ND ND ND ND	ND	ND ug/Kg ND ug/Kg <td>ND</td> <td>ND ug/Kg 250 57 ND ug/Kg 250 33 ND ug/Kg 250 43 ND ug/Kg 250 37 ND ug/Kg 250 41 ND ug/Kg 250 31 ND ug/Kg 250 57 ND ug/Kg 250 57 ND ug/Kg 250 57 ND ug/Kg 250 54 ND ug/Kg 250 54 ND ug/Kg 250 52 ND ug/Kg 250 47 ND ug/Kg 250 47 ND ug/Kg 250 42 ND ug/Kg 250 42 ND ug/Kg 250 42 ND ug/Kg 250 42 ND ug/Kg 250 45 ND ug/Kg 250 45</td> <td>ND ug/Kg 250 57 50 ND ug/Kg 250 33 50 ND ug/Kg 250 43 50 ND ug/Kg 250 37 50 ND ug/Kg 250 41 50 ND ug/Kg 250 46 50 ND ug/Kg 250 57 50 ND ug/Kg 250 57 50 ND ug/Kg 250 54 50 ND ug/Kg 250 54 50 ND ug/Kg 250 52 50 ND ug/Kg 250 42 50 ND ug/Kg 250 42 50 ND ug/Kg 250 54 50 ND ug/Kg 250 42 50 ND ug/Kg 250 54 50 ND ug/Kg 250 45 50 ND ug/Kg 250 45 50 ND ug/Kg 250 54 50 ND ug/Kg 250 55 50 ND ug/Kg 250 50 50 ND</td> <td> ND</td> <td>ND ug/Kg 250 57 50 338582 04/24/24 ND ug/Kg 250 33 50 338582 04/24/24 ND ug/Kg 250 43 50 338582 04/24/24 ND ug/Kg 250 43 50 338582 04/24/24 ND ug/Kg 250 41 50 338582 04/24/24 ND ug/Kg 250 41 50 338582 04/24/24 ND ug/Kg 250 31 50 338582 04/24/24 ND ug/Kg 250 46 50 338582 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 52 50 338582 04/24/24 ND ug/Kg 250 52 50 338582 04/24/24 ND ug/Kg 250 47 50 338582 04/24/24 ND ug/Kg 250 47 50 338582 04/24/24 ND ug/Kg 250 43 50 338582 04/24/24 ND ug/Kg 250 42 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 50 53 338582 04/24/24 ND ug/Kg 250 50 338582 04/24/24 ND ug/Kg 250 50 50 338582 04/24/24 ND ug/Kg 250 50 338582 04/24/24 ND ug/Kg 250 50 338582 04/24/24 ND ug/Kg 250 45 50 338582 04/24/24 ND ug/Kg 250 50 50 338582 04/24/24 ND ug/Kg 250 50 33 35882 04/24/24 ND ug/Kg 250 50 33 350 338582 04/24/24 ND ug/Kg 250 50 33 35882 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 ND ug/Kg 250 58 50 338582 0</td> <td>ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 33 50 338582 04/24/24 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 04/24/24 ND ug/Kg 250 31 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 250 338582 04/24/24 04/24/24 ND ug/Kg 250 57 250 338582 04/24/24 04/24/24 ND ug/Kg 250 57 250 338582 04/24/24 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 04/24/24 ND ug/Kg 250 52 50 338582 04/24/24 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 58 50</td>	ND	ND ug/Kg 250 57 ND ug/Kg 250 33 ND ug/Kg 250 43 ND ug/Kg 250 37 ND ug/Kg 250 41 ND ug/Kg 250 31 ND ug/Kg 250 57 ND ug/Kg 250 57 ND ug/Kg 250 57 ND ug/Kg 250 54 ND ug/Kg 250 54 ND ug/Kg 250 52 ND ug/Kg 250 47 ND ug/Kg 250 47 ND ug/Kg 250 42 ND ug/Kg 250 42 ND ug/Kg 250 42 ND ug/Kg 250 42 ND ug/Kg 250 45 ND ug/Kg 250 45	ND ug/Kg 250 57 50 ND ug/Kg 250 33 50 ND ug/Kg 250 43 50 ND ug/Kg 250 37 50 ND ug/Kg 250 41 50 ND ug/Kg 250 46 50 ND ug/Kg 250 57 50 ND ug/Kg 250 57 50 ND ug/Kg 250 54 50 ND ug/Kg 250 54 50 ND ug/Kg 250 52 50 ND ug/Kg 250 42 50 ND ug/Kg 250 42 50 ND ug/Kg 250 54 50 ND ug/Kg 250 42 50 ND ug/Kg 250 54 50 ND ug/Kg 250 45 50 ND ug/Kg 250 45 50 ND ug/Kg 250 54 50 ND ug/Kg 250 55 50 ND ug/Kg 250 50 50 ND	ND	ND ug/Kg 250 57 50 338582 04/24/24 ND ug/Kg 250 33 50 338582 04/24/24 ND ug/Kg 250 43 50 338582 04/24/24 ND ug/Kg 250 43 50 338582 04/24/24 ND ug/Kg 250 41 50 338582 04/24/24 ND ug/Kg 250 41 50 338582 04/24/24 ND ug/Kg 250 31 50 338582 04/24/24 ND ug/Kg 250 46 50 338582 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 52 50 338582 04/24/24 ND ug/Kg 250 52 50 338582 04/24/24 ND ug/Kg 250 47 50 338582 04/24/24 ND ug/Kg 250 47 50 338582 04/24/24 ND ug/Kg 250 43 50 338582 04/24/24 ND ug/Kg 250 42 50 338582 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 ND ug/Kg 250 50 53 338582 04/24/24 ND ug/Kg 250 50 338582 04/24/24 ND ug/Kg 250 50 50 338582 04/24/24 ND ug/Kg 250 50 338582 04/24/24 ND ug/Kg 250 50 338582 04/24/24 ND ug/Kg 250 45 50 338582 04/24/24 ND ug/Kg 250 50 50 338582 04/24/24 ND ug/Kg 250 50 33 35882 04/24/24 ND ug/Kg 250 50 33 350 338582 04/24/24 ND ug/Kg 250 50 33 35882 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 ND ug/Kg 250 58 50 338582 0	ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 33 50 338582 04/24/24 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 04/24/24 ND ug/Kg 250 37 50 338582 04/24/24 04/24/24 ND ug/Kg 250 31 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 54 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 250 338582 04/24/24 04/24/24 ND ug/Kg 250 57 250 338582 04/24/24 04/24/24 ND ug/Kg 250 57 250 338582 04/24/24 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 04/24/24 ND ug/Kg 250 52 50 338582 04/24/24 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 04/24/24 ND ug/Kg 250 55 50 338582 04/24/24 04/24/24 ND ug/Kg 250 57 50 338582 04/24/24 04/24/24 ND ug/Kg 250 58 50

506597-001 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
								0.1/0.0/0.1	0.1/00/01	
Acenaphthylene	ND		ug/Kg	9.9	1.6	0.99	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	9.9	1.0	0.99	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	9.9	1.2	0.99	338434	04/22/24	04/23/24	DJL
Phenanthrene	ND		ug/Kg	9.9	2.2	0.99	338434	04/22/24	04/23/24	DJL
Anthracene	ND		ug/Kg	9.9	1.4	0.99	338434	04/22/24	04/23/24	DJL
Fluoranthene	ND		ug/Kg	9.9	3.3	0.99	338434	04/22/24	04/23/24	DJL
Pyrene	ND		ug/Kg	9.9	3.6	0.99	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	ND		ug/Kg	9.9	1.1	0.99	338434	04/22/24	04/23/24	DJL
Chrysene	4.0	J	ug/Kg	9.9	0.95	0.99	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	7.1	J	ug/Kg	9.9	0.92	0.99	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	2.3	J	ug/Kg	9.9	1.0	0.99	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	ND		ug/Kg	9.9	1.3	0.99	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	9.9	1.5	0.99	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND		ug/Kg	9.9	2.8	0.99	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	1.7	J	ug/Kg	9.9	1.6	0.99	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	75%		%REC	27-125		0.99	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	75%		%REC	30-120		0.99	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	78%		%REC	33-155		0.99	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 2 Lab ID: 506597-002 Collected: 04/17/24 11:23

Matrix: Soil Basis: Dry

506597-002 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	1		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	0.86	0.97	338460	04/22/24	04/23/24	SBW
Arsenic	2.5		mg/Kg	0.98	0.25	0.97	338460	04/22/24	04/23/24	SBW
Barium	50		mg/Kg	0.98	0.078	0.97	338460	04/22/24	04/23/24	SBW
Beryllium	0.092	J	mg/Kg	0.49	0.0062	0.97	338460	04/22/24	04/23/24	SBW
Cadmium	0.045	J	mg/Kg	0.49	0.036	0.97	338460	04/22/24	04/23/24	SBW
Chromium	15		mg/Kg	0.98	0.22	0.97	338460	04/22/24	04/23/24	SBW
Cobalt	8.1		mg/Kg	0.49	0.22	0.97	338460	04/22/24	04/23/24	SBW
Copper	71		mg/Kg	0.98	0.14	0.97	338460	04/22/24	04/23/24	SBW
Lead	40		mg/Kg	0.98	0.26	0.97	338460	04/22/24	04/23/24	SBW
Molybdenum	0.90	J	mg/Kg	0.98	0.11	0.97	338460	04/22/24	04/23/24	SBW
Nickel	9.2		mg/Kg	0.98	0.12	0.97	338460	04/22/24	04/23/24	SBW
Selenium	1.2	J	mg/Kg	2.9	0.53	0.97	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.49	0.061	0.97	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.33	0.97	338460	04/22/24	04/23/24	SBW
Vanadium	90		mg/Kg	0.98	0.050	0.97	338460	04/22/24	04/23/24	SBW
Zinc	40		mg/Kg	4.9	0.23	0.97	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	0.041	J	mg/Kg	0.15	0.038	1.1	338476	04/23/24	04/23/24	KAM
Prep Method: EPA 3580M	ND			40		4	000000	04/05/04	04/05/04	IZMD
GRO C6-C12	ND		mg/Kg	40	1.1	4	338680	04/25/24	04/25/24	KMB
DRO C10-C28 ORO C28-C44	44		mg/Kg	40	14	4	338680	04/25/24	04/25/24	KMB
	120		mg/Kg	81	14	4	338680	04/25/24	04/25/24	KMB
Surrogates n-Triacontane	110%		%REC	70-130		4	338680	04/25/24	04/25/24	KMB
Method: EPA 8081A Prep Method: EPA 3546	11070		701120	70 100		· ·	000000	0 1/25/21	0 1/25/21	TUVID
alpha-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.1	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	2.1	1	338386	04/22/24	04/23/24	MES
4,4'-DDD	ND		ug/Kg	5.1	0.95	1	338386	04/22/24	04/23/24	MES

			•	esuits						
506597-002 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND		ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	4.8	J	ug/Kg	5.1	1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND		ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND		ug/Kg	100	32	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND		ug/Kg	51	9.3	1	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
TCMX	64%		%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	45%		%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082										
Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND		ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND		ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND		ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND		ug/Kg	51	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND		ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND		ug/Kg	51	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND		ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND		ug/Kg	51	15	1	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
Decachlorobiphenyl (PCB)	61%		%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B										
Freon 12	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND		ug/Kg	5.1	2.5	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Acetone	ND		ug/Kg	100	32	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND		ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND		ug/Kg	20		1	338582	04/24/24	04/24/24	TCN
MTBE	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND		ug/Kg	5.1	0.9	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND		ug/Kg	100	4.3	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND		ug/Kg	5.1	2.5	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND		ug/Kg	5.1	1.3	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND		ug/Kg ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND		ug/Kg ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Benzene	2.7	J	ug/Kg ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
	ND	J			0.5	1		04/24/24	04/24/24	TCN
Trichloroethene			ug/Kg	5.1		I	338582			
1,2-Dichloropropane	ND		ug/Kg	5.1	0.8	<u> </u>	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND		ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN

506597-002 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	5.1	1.6	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Toluene	4.8	J	ug/Kg	5.1	0.9	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	5.1	1.5	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	1.4	J	ug/Kg	10	0.8	1	338582	04/24/24	04/24/24	TCN
o-Xylene	0.8	J	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	4.5	J	ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	5.1	1.3	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	5.1	0.3		338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	5.1	0.3		338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	5.1	0.4		338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	5.1	1.2		338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Surrogates			9,1-9	Limits						
Dibromofluoromethane	98%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	100%		%REC	70-145		.	338582	04/24/24	04/24/24	TCN
Toluene-d8	101%		%REC	70-145		.	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	102%		%REC	70-145		.	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	35	J	ug/Kg	41	6.2	4	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	50		ug/Kg	41	6.2	4	338434	04/22/24	04/23/24	DJL
Naphthalene	50		ug/Kg	41	15	4	338434	04/22/24	04/23/24	DJL
Acenaphthylene	21	J	ug/Kg	41	6.5	4	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	41	4.2	4	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	41	5.1	4	338434	04/22/24	04/23/24	DJL
Phenanthrene	49		ug/Kg	41	8.9	4	338434	04/22/24	04/23/24	DJL
	73		uu/i\u		0.0		-		U 1/LU/LT	

506597-002 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Fluoranthene	140		ug/Kg	41	14	4	338434	04/22/24	04/23/24	DJL
Pyrene	94		ug/Kg	41	15	4	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	43		ug/Kg	41	4.4	4	338434	04/22/24	04/23/24	DJL
Chrysene	150		ug/Kg	41	3.9	4	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	340		ug/Kg	41	3.8	4	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	87		ug/Kg	41	4.3	4	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	50		ug/Kg	41	5.4	4	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	80		ug/Kg	41	6.2	4	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	18	J	ug/Kg	41	11	4	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	77		ug/Kg	41	6.7	4	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	63%		%REC	27-125		4	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	82%		%REC	30-120		4	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	74%		%REC	33-155		4	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 3 Lab ID: 506597-003 Collected: 04/17/24 11:26

Matrix: Soil Basis: Dry

506597-003 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	ND		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	0.85	0.96	338460	04/22/24	04/23/24	SBW
Arsenic	0.76	J	mg/Kg	0.96	0.24	0.96	338460	04/22/24	04/23/24	SBW
Barium	38		mg/Kg	0.96	0.077	0.96	338460	04/22/24	04/23/24	SBW
Beryllium	0.082	J	mg/Kg	0.48	0.0060	0.96	338460	04/22/24	04/23/24	SBW
Cadmium	ND		mg/Kg	0.48	0.035	0.96	338460	04/22/24	04/23/24	SBW
Chromium	8.9		mg/Kg	0.96	0.22	0.96	338460	04/22/24	04/23/24	SBW
Cobalt	13		mg/Kg	0.48	0.21	0.96	338460	04/22/24	04/23/24	SBW
Copper	88		mg/Kg	0.96	0.14	0.96	338460	04/22/24	04/23/24	SBW
Lead	14		mg/Kg	0.96	0.25	0.96	338460	04/22/24	04/23/24	SBW
Molybdenum	0.43	J	mg/Kg	0.96	0.11	0.96	338460	04/22/24	04/23/24	SBW
Nickel	4.1		mg/Kg	0.96	0.11	0.96	338460	04/22/24	04/23/24	SBW
Selenium	1.9	J	mg/Kg	2.9	0.52	0.96	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.48	0.059	0.96	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.32	0.96	338460	04/22/24	04/23/24	SBW
Vanadium	150		mg/Kg	0.96	0.049	0.96	338460	04/22/24	04/23/24	SBW
Zinc	38		mg/Kg	4.8	0.23	0.96	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	ND		mg/Kg	0.14	0.036	1	338476	04/23/24	04/23/24	KAM
Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	9.9		0.99	338396	04/22/24	04/23/24	KMB
DRO C10-C28	4.1	J	mg/Kg	9.9	3.4	0.99	338396	04/22/24	04/23/24	KMB
ORO C28-C44	4.0	J	mg/Kg	20	3.4	0.99	338396	04/22/24	04/23/24	KMB
Surrogates	700/		0/ DE0	Limits		0.00	000000	0.1/00/01	0.1/00/0.1	1/1/15
n-Triacontane	79%		%REC	70-130		0.99	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND	· <u> </u>	ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.1	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	2.1	1	338386	04/22/24	04/23/24	MES
4,4'-DDD	ND		ug/Kg	5.1	0.95	1	338386	04/22/24	04/23/24	MES

9 of 67

	<i>,</i> ,,	iaiyəiə i i	Journe	.0. 00	,000	•			
506597-003 Analyte		ual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	32	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	51	9.3	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	64%	%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	54%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	51	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	51	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	51	15	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	68%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	250	180	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	250	81	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	250	99	50	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	5,000	1,900	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	250	64	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	1,000		50	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	250	66	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	250	49	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	5,000	280	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	250	78	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	250	56	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	250	98	50	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
	. 15	~g,g				20000	· = = .	· = ., = .	

506597-003 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	250	85	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Toluene	ND		ug/Kg	250	51	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	250	46	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	250	54	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	500	120	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	250	42	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	54	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	250	72	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	250	42	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	250	77	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	250	67	50	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg	250	56	50	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	250	73	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
Surrogates			-9/-19	Limits						
Dibromofluoromethane	96%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	98%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Toluene-d8	99%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	101%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND		ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
Naphthalene	ND		ug/Kg	10	3.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND		ug/Kg	10	1.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	10	1.0	1	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	10	1.3	1	338434	04/22/24	04/23/24	DJL
Phenanthrene	6.0	J	ug/Kg	10	2.2	1	338434	04/22/24	04/23/24	DJL
Anthracene	2.7	J .	ug/Kg	. 10	1.4	. 1	338434	04/22/24	04/23/24	DJL

Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
19		ug/Kg	10	3.4	1	338434	04/22/24	04/23/24	DJL
12		ug/Kg	10	3.7	1	338434	04/22/24	04/23/24	DJL
3.9	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
20		ug/Kg	10	0.97	1	338434	04/22/24	04/23/24	DJL
35		ug/Kg	10	0.93	1	338434	04/22/24	04/23/24	DJL
10		ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
4.1	J	ug/Kg	10	1.3	1	338434	04/22/24	04/23/24	DJL
9.5	J	ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
ND		ug/Kg	10	2.8	1	338434	04/22/24	04/23/24	DJL
9.9	J	ug/Kg	10	1.7	1	338434	04/22/24	04/23/24	DJL
			Limits						
56%		%REC	27-125		1	338434	04/22/24	04/23/24	DJL
53%		%REC	30-120		1	338434	04/22/24	04/23/24	DJL
58%		%REC	33-155		1	338434	04/22/24	04/23/24	DJL
	19 12 3.9 20 35 10 4.1 9.5 ND 9.9	19 12 3.9 J 20 35 10 4.1 J 9.5 J ND 9.9 J	19 ug/Kg 12 ug/Kg 3.9 J ug/Kg 20 ug/Kg 35 ug/Kg 10 ug/Kg 4.1 J ug/Kg 9.5 J ug/Kg ND ug/Kg 9.9 J ug/Kg 56% %REC 53% %REC	19	19	19	19 ug/Kg 10 3.4 1 338434 12 ug/Kg 10 3.7 1 338434 3.9 J ug/Kg 10 1.1 1 338434 20 ug/Kg 10 0.97 1 338434 35 ug/Kg 10 0.93 1 338434 10 ug/Kg 10 1.1 1 338434 4.1 J ug/Kg 10 1.3 1 338434 9.5 J ug/Kg 10 1.5 1 338434 ND ug/Kg 10 2.8 1 338434 9.9 J ug/Kg 10 1.7 1 338434 Limits 56% %REC 27-125 1 338434 53% %REC 30-120 1 338434	19	19

Sample ID: GRB 4 Lab ID: 506597-004 Collected: 04/17/24 11:29

Matrix: Soil Basis: Dry

506597-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	ND		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	0.87	0.98	338460	04/22/24	04/23/24	SBW
Arsenic	0.81	J	mg/Kg	0.99	0.25	0.98	338460	04/22/24	04/23/24	SBW
Barium	27		mg/Kg	0.99	0.079	0.98	338460	04/22/24	04/23/24	SBW
Beryllium	0.057	J	mg/Kg	0.50	0.0062	0.98	338460	04/22/24	04/23/24	SBW
Cadmium	ND		mg/Kg	0.50	0.036	0.98	338460	04/22/24	04/23/24	SBW
Chromium	8.9		mg/Kg	0.99	0.23	0.98	338460	04/22/24	04/23/24	SBW
Cobalt	9.5		mg/Kg	0.50	0.22	0.98	338460	04/22/24	04/23/24	SBW
Copper	88		mg/Kg	0.99	0.14	0.98	338460	04/22/24	04/23/24	SBW
Lead	22		mg/Kg	0.99	0.26	0.98	338460	04/22/24	04/23/24	SBW
Molybdenum	0.56	J	mg/Kg	0.99	0.11	0.98	338460	04/22/24	04/23/24	SBW
Nickel	4.9		mg/Kg	0.99	0.12	0.98	338460	04/22/24	04/23/24	SBW
Selenium	1.1	J	mg/Kg	3.0	0.54	0.98	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.50	0.061	0.98	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	3.0	0.33	0.98	338460	04/22/24	04/23/24	SBW
Vanadium	94		mg/Kg	0.99	0.051	0.98	338460	04/22/24	04/23/24	SBW
Zinc	30		mg/Kg	5.0	0.23	0.98	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	ND		mg/Kg	0.16	0.040	1.1	338476	04/23/24	04/23/24	KAM
Prep Method: EPA 3580M	ND			10			000000	0.4/00/0.4	0.4/00/0.4	IZMD
GRO C6-C12 DRO C10-C28	ND 4.8		mg/Kg	10	2.5	1	338396 338396	04/22/24 04/22/24	04/23/24 04/23/24	KMB
ORO C28-C44	5.4	J	mg/Kg	10 20	3.5 3.5	1	338396		04/23/24	KMB KMB
	3.4	J	mg/Kg	Limits	3.5	1	330390	04/22/24	04/23/24	KIVID
Surrogates n-Triacontane	96%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546	90%		76NEG	70-130			330390	04/22/24	04/23/24	KIVID
alpha-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.1	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	2.1	1	338386	04/22/24	04/23/24	MES
4,4'-DDD	ND		ug/Kg	5.1	0.95	1	338386	04/22/24	04/23/24	MES

506597-004 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	32	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	51	9.3	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	71%	%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	70%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	51	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	51	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	51	15	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	88%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	250	81	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	250	100	50	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	5,100	1,900	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	250	65	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	1,000		50	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	250	66	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	250	50	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	5,100	280	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	250	79	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	250	99	50	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN

506597-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	250	86	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Toluene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	250	34	50	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	250	42	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	250	46	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	510	120	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	250	73	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	250	53	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND			250	59	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
			ug/Kg	250	78	50	338582	04/24/24	04/24/24	
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	ND ND		ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN TCN
			ug/Kg		57		338582			
Hexachlorobutadiene	ND		ug/Kg	250		50	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	250	73 59	50		04/24/24 04/24/24	04/24/24 04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
Surrogates Dibromofluoromethane	96%		%REC	Limits 70-145		ΕO	338582	04/24/24	04/24/24	TCN
			%REC			50			04/24/24	TCN
1,2-Dichloroethane-d4	99%			70-145		50	338582	04/24/24		
Toluene-d8	98%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	100%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	10	1.5	0.99	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND		ug/Kg	10	1.5	0.99	338434	04/22/24	04/23/24	DJL
Naphthalene	ND		ug/Kg	10	3.6	0.99	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND		ug/Kg	10	1.6	0.99	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	10	1.0	0.99	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	10	1.2	0.99	338434	04/22/24	04/23/24	DJL
Phenanthrene	6.1	J	ug/Kg	10	2.2	0.99	338434	04/22/24	04/23/24	DJL
Anthracene	3.6	J .	ug/Kg	10	1.4	0.99	338434	04/22/24	04/23/24	DJL

506597-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Fluoranthene	28		ug/Kg	10	3.4	0.99	338434	04/22/24	04/23/24	DJL
Pyrene	11		ug/Kg	10	3.6	0.99	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	3.1	J	ug/Kg	10	1.1	0.99	338434	04/22/24	04/23/24	DJL
Chrysene	7.9	J	ug/Kg	10	0.96	0.99	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	15		ug/Kg	10	0.93	0.99	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	4.3	J	ug/Kg	10	1.1	0.99	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	3.7	J	ug/Kg	10	1.3	0.99	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	4.8	J	ug/Kg	10	1.5	0.99	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND		ug/Kg	10	2.8	0.99	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	6.9	J	ug/Kg	10	1.7	0.99	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	61%		%REC	27-125		0.99	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	66%		%REC	30-120		0.99	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	74%		%REC	33-155		0.99	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 5 Lab ID: 506597-005 Collected: 04/17/24 11:35

Matrix: Soil Basis: Dry

								•		
506597-005 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	ND		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	0.85	0.97	338460	04/22/24	04/23/24	SBW
Arsenic	15		mg/Kg	0.97	0.25	0.97	338460	04/22/24	04/23/24	SBW
Barium	14		mg/Kg	0.97	0.077	0.97	338460	04/22/24	04/23/24	SBW
Beryllium	0.12	J	mg/Kg	0.49	0.0061	0.97	338460	04/22/24	04/23/24	SBW
Cadmium	0.22	J	mg/Kg	0.49	0.035	0.97	338460	04/22/24	04/23/24	SBW
Chromium	12		mg/Kg	0.97	0.22	0.97	338460	04/22/24	04/23/24	SBW
Cobalt	2.2		mg/Kg	0.49	0.22	0.97	338460	04/22/24	04/23/24	SBW
Copper	16		mg/Kg	0.97	0.14	0.97	338460	04/22/24	04/23/24	SBW
Lead	12		mg/Kg	0.97	0.25	0.97	338460	04/22/24	04/23/24	SBW
Molybdenum	0.53	J	mg/Kg	0.97	0.11	0.97	338460	04/22/24	04/23/24	SBW
Nickel	10		mg/Kg	0.97	0.12	0.97	338460	04/22/24	04/23/24	SBW
Selenium	ND		mg/Kg	2.9	0.52	0.97	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.49	0.060	0.97	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.33	0.97	338460	04/22/24	04/23/24	SBW
Vanadium	15		mg/Kg	0.97	0.050	0.97	338460	04/22/24	04/23/24	SBW
Zinc	35		mg/Kg	4.9	0.23	0.97	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	ND		mg/Kg	0.17	0.042	1.2	338476	04/23/24	04/23/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	9.9		0.99	338396	04/22/24	04/23/24	KMB
DRO C10-C28	27		mg/Kg	9.9	3.4	0.99	338396	04/22/24	04/23/24	KMB
ORO C28-C44	30		mg/Kg	20	3.4	0.99	338396	04/22/24	04/23/24	KMB
Surrogates				Limits						
n-Triacontane	86%		%REC	70-130		0.99	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.1	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
	ND		ug/Kg	5.1	2.1	1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	שוו		ug/itg	0.1			000000	0 1/ == 1	0 1/ = 0/ = 1	

506597-005 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	32	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	51	9.3	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	62%	%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	48%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	51	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	51	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	51	15	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	62%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	5.0	0.9	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	5.0	0.8	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	5.0	1.0	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	5.0	1.1	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	5.0	2.5	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	5.0	0.8	1	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	100	32	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	5.0	0.7	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	5.0	1.0	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	20		1	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	5.0	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	5.0	1.1	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	5.0	0.9	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	100	4.3	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	5.0	0.8	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	5.0	2.5	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	5.0	1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	5.0	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	5.0	1.3	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	5.0	0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	5.0	1.2	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	5.0	1.0	1	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	5.0	0.5	1	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	5.0	0.7	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	5.0	0.8	1	338582	04/24/24	04/24/24	TCN
• •									
Bromodichloromethane	ND	ug/Kg	5.0	1.1	1	338582	04/24/24	04/24/24	TCN

506597-005 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	1.6	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	1.0	1	338582	04/24/24	04/24/24	TCN
Toluene	ND		ug/Kg	5.0	0.9	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	1.4	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	5.0	0.4	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	5.0	0.6	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	5.0	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	5.0	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	5.0	0.6	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	5.0	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.0	0.7	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	5.0	0.6	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	10	0.8	1	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	5.0	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	5.0	0.3	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	5.0	1.0	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	5.0	0.3	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.0	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	5.0	1.2	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	5.0	0.3	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	5.0	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	5.0	0.4	1	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	5.0	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	5.0	0.4	1	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	5.0	0.4	<u> </u>	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	5.0	0.4	<u>'</u>	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	5.0	0.5	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	5.0	0.3	<u>.</u> 1	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	5.0	0.4	<u>'</u>	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	5.0	0.4	1	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg	5.0	0.4	1	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	5.0	0.4	- 1	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.0	1.2	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	5.0	0.6	1	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg	5.0	0.6	- +	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg ug/Kg	5.0	1.2	- +	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg ug/Kg	5.0	0.7	1	338582	04/24/24	04/24/24	TCN
Surrogates	טוו		ug/Ng	Limits	0.7	'	330302	04/24/24	04/24/24	TON
Dibromofluoromethane	99%		%REC	70-145		- 1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	98%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Toluene-d8	101%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
	101%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	102%		%REU	70-145		- 1	330302	04/24/24	04/24/24	TON
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	11	J	ug/Kg	40	6.1	4	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	22	J	ug/Kg	40	6.0	4	338434	04/22/24	04/23/24	DJL
Naphthalene	45		ug/Kg	40	14	4	338434	04/22/24	04/23/24	DJL
Acenaphthylene	7.3	J	ug/Kg	40	6.3	4	338434	04/22/24	04/23/24	DJL
Acenaphthene	20	J	ug/Kg	40	4.1	4	338434	04/22/24	04/23/24	DJL
Fluorene	9.7	J	ug/Kg	40	5.0	4	338434	04/22/24	04/23/24	DJL
Phenanthrene	26	J	ug/Kg	40	8.8	4	338434	04/22/24	04/23/24	DJL
Anthracene	20	J .	ug/Kg	. 40	5.6	4	338434	04/22/24	04/23/24	DJL

Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
19	J	ug/Kg	40	13	4	338434	04/22/24	04/23/24	DJL
ND		ug/Kg	40	14	4	338434	04/22/24	04/23/24	DJL
4.6	J	ug/Kg	40	4.3	4	338434	04/22/24	04/23/24	DJL
11	J	ug/Kg	40	3.8	4	338434	04/22/24	04/23/24	DJL
45		ug/Kg	40	3.7	4	338434	04/22/24	04/23/24	DJL
12	J	ug/Kg	40	4.2	4	338434	04/22/24	04/23/24	DJL
6.1	J	ug/Kg	40	5.3	4	338434	04/22/24	04/23/24	DJL
12	J	ug/Kg	40	6.1	4	338434	04/22/24	04/23/24	DJL
ND		ug/Kg	40	11	4	338434	04/22/24	04/23/24	DJL
17	J	ug/Kg	40	6.6	4	338434	04/22/24	04/23/24	DJL
			Limits						
92%		%REC	27-125		4	338434	04/22/24	04/23/24	DJL
91%		%REC	30-120		4	338434	04/22/24	04/23/24	DJL
83%		%REC	33-155		4	338434	04/22/24	04/23/24	DJL
	19 ND 4.6 11 45 12 6.1 12 ND 17	19 J ND 4.6 J 11 J 45 12 J 6.1 J 12 J ND 17 J 92% 91%	19 J ug/Kg ND ug/Kg 4.6 J ug/Kg 11 J ug/Kg 45 ug/Kg 12 J ug/Kg 6.1 J ug/Kg 12 J ug/Kg 17 J ug/Kg ND ug/Kg 17 J ug/Kg 92% %REC 91% %REC	19 J ug/Kg 40 ND ug/Kg 40 4.6 J ug/Kg 40 11 J ug/Kg 40 45 ug/Kg 40 12 J ug/Kg 40 6.1 J ug/Kg 40 12 J ug/Kg 40 17 J ug/Kg 40 ND ug/Kg 40 17 J ug/Kg 40 Limits 92% %REC 27-125	19 J ug/Kg 40 13 ND ug/Kg 40 14 4.6 J ug/Kg 40 4.3 11 J ug/Kg 40 3.8 45 ug/Kg 40 3.7 12 J ug/Kg 40 4.2 6.1 J ug/Kg 40 5.3 12 J ug/Kg 40 5.3 17 J ug/Kg 40 6.1 ND ug/Kg 40 6.1 ND ug/Kg 40 6.6 Limits 92% %REC 27-125 91% %REC 30-120	19 J ug/Kg 40 13 4 ND ug/Kg 40 14 4 4.6 J ug/Kg 40 4.3 4 11 J ug/Kg 40 3.8 4 45 ug/Kg 40 3.7 4 12 J ug/Kg 40 4.2 4 6.1 J ug/Kg 40 5.3 4 12 J ug/Kg 40 6.1 4 ND ug/Kg 40 11 4 17 J ug/Kg 40 6.6 4 Limits 92% %REC 27-125 4 91% %REC 30-120 4	19 J ug/Kg 40 13 4 338434 ND ug/Kg 40 14 4 338434 4.6 J ug/Kg 40 4.3 4 338434 11 J ug/Kg 40 3.8 4 338434 45 ug/Kg 40 3.7 4 338434 12 J ug/Kg 40 4.2 4 338434 6.1 J ug/Kg 40 5.3 4 338434 ND ug/Kg 40 6.1 4 338434 17 J ug/Kg 40 6.6 4 338434 17 J ug/Kg 40 6.6 4 338434 17 J ug/Kg 40 6.6 4 338434 92% %REC 27-125 4 338434 91% %REC 30-120 4 338434	19 J ug/Kg 40 13 4 338434 04/22/24 ND ug/Kg 40 14 4 338434 04/22/24 4.6 J ug/Kg 40 4.3 4 338434 04/22/24 11 J ug/Kg 40 3.8 4 338434 04/22/24 45 ug/Kg 40 3.7 4 338434 04/22/24 12 J ug/Kg 40 4.2 4 338434 04/22/24 6.1 J ug/Kg 40 5.3 4 338434 04/22/24 12 J ug/Kg 40 5.3 4 338434 04/22/24 12 J ug/Kg 40 6.1 4 338434 04/22/24 ND ug/Kg 40 6.1 4 338434 04/22/24 ND ug/Kg 40 11 4 338434 04/22/24 17 J ug/Kg 40 6.6 4 338434 04/22/24 17 J ug/Kg 40 6.6 4 338434 04/22/24 18 Elimits 92% %REC 27-125 4 338434 04/22/24	19 J ug/Kg 40 13 4 338434 04/22/24 04/23/24 ND ug/Kg 40 14 4 338434 04/22/24 04/23/24 4.6 J ug/Kg 40 4.3 4 338434 04/22/24 04/23/24 11 J ug/Kg 40 3.8 4 338434 04/22/24 04/23/24 45 ug/Kg 40 3.7 4 338434 04/22/24 04/23/24 12 J ug/Kg 40 4.2 4 338434 04/22/24 04/23/24 6.1 J ug/Kg 40 5.3 4 338434 04/22/24 04/23/24 12 J ug/Kg 40 5.3 4 338434 04/22/24 04/23/24 12 J ug/Kg 40 5.3 4 338434 04/22/24 04/23/24 12 J ug/Kg 40 6.1 4 338434 04/22/24 04/23/24 ND ug/Kg 40 6.1 4 338434 04/22/24 04/23/24 ND ug/Kg 40 6.6 4 338434 04/22/24 04/23/24 17 J ug/Kg 40 6.6 4 338434 04/22/24 04/23/24 17 J ug/Kg 40 6.6 4 338434 04/22/24 04/23/24 18 Ug/Kg 40 6.6 4 338434 04/22/24 04/23/24 19 Ug/Kg 40 6.6 4 338434 04/22/24 04/23/24

Sample ID: GRB 6 Lab ID: 506597-006 Collected: 04/17/24 11:39

Matrix: Soil Basis: Dry

506597-006 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	7		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.1	0.92	0.97	338460	04/22/24	04/23/24	SBW
Arsenic	7.0		mg/Kg	1.0	0.26	0.97	338460	04/22/24	04/23/24	SBW
Barium	100		mg/Kg	1.0	0.083	0.97	338460	04/22/24	04/23/24	SBW
Beryllium	0.17	J	mg/Kg	0.52	0.0066	0.97	338460	04/22/24	04/23/24	SBW
Cadmium	0.13	J	mg/Kg	0.52	0.038	0.97	338460	04/22/24	04/23/24	SBW
Chromium	24		mg/Kg	1.0	0.24	0.97	338460	04/22/24	04/23/24	SBW
Cobalt	6.4		mg/Kg	0.52	0.23	0.97	338460	04/22/24	04/23/24	SBW
Copper	40		mg/Kg	1.0	0.15	0.97	338460	04/22/24	04/23/24	SBW
Lead	4.8		mg/Kg	1.0	0.27	0.97	338460	04/22/24	04/23/24	SBW
Molybdenum	0.67	J	mg/Kg	1.0	0.12	0.97	338460	04/22/24	04/23/24	SBW
Nickel	35		mg/Kg	1.0	0.12	0.97	338460	04/22/24	04/23/24	SBW
Selenium	0.94	J	mg/Kg	3.1	0.56	0.97	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.52	0.065	0.97	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	3.1	0.35	0.97	338460	04/22/24	04/23/24	SBW
Vanadium	47		mg/Kg	1.0	0.054	0.97	338460	04/22/24	04/23/24	SBW
Zinc	50		mg/Kg	5.2	0.25	0.97	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	0.24		mg/Kg	0.17	0.042	1.1	338476	04/23/24	04/23/24	KAM
Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	210		20	338396	04/22/24	04/23/24	KMB
DRO C10-C28	630		mg/Kg	210	74	20	338396	04/22/24	04/23/24	KMB
ORO C28-C44	540		mg/Kg	430	74	20	338396	04/22/24	04/23/24	KMB
Surrogates				Limits						
n-Triacontane		DO	%REC	70-130		20	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	27	5.4	5.1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	27	7.6	5.1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	27	5.6	5.1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	27	6.7	5.1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	27	9.3	5.1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	27	7.4	5.1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	27	9.2	5.1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	27	7.7	5.1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	27	8.4	5.1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	27	8.0	5.1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	27	9.1	5.1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	27	9.1	5.1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	27	11	5.1	338386	04/22/24	04/23/24	MES
Endobalian ballato										

		Allalysis F							
506597-006 Analyte	Result		RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	27	6.5	5.1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	27	8.2	5.1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	27	9.4	5.1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	55	13	5.1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	550	170	5.1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	270	50	5.1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	81%	%REC	23-120		5.1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	52%	%REC	24-120		5.1	338386	04/22/24	04/23/24	MES
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	110	32	2	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	110	50	2	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	110	41	2	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	110	39	2	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	110	46	2	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	110	14	2	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	110	54	2	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	110	36	2	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	110	30	2	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	103%	%REC	19-121		2	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	5.4	1.0	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	5.4	0.9	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	5.4	1.1	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	5.4	1.2	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	5.4	2.6	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	5.4	0.9	1	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	110	34	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	5.4	0.8	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	5.4	1.1	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	22		1	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	5.4	1.1	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	5.4	1.2	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	5.4	1.0	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	110	4.6	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	5.4	0.9	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	5.4	2.7	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	5.4	1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	5.4	1.4	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	5.4	0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	5.4	1.3	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	5.4	1.1	1	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	5.4	0.6	1	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	5.4	0.7	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	5.4	0.8	1	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	5.4	1.2	1	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
Dibiomomethane	טוו	ug/ivg	J. 1	0.5		000002	U-7/L-7/L-7	U-7/L-7/L-7	1011

506597-006 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND	ug/Kg	5.4	1.7	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	5.4	1.1	1	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	5.4	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND	ug/Kg	5.4	1.6	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND	ug/Kg	5.4	0.7	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND	ug/Kg	5.4	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND	ug/Kg	5.4	0.7	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.4	0.8	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND	ug/Kg	5.4	0.7	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND	ug/Kg	11	0.9	1	338582	04/24/24	04/24/24	TCN
o-Xylene	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND	ug/Kg	5.4	1.1	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND	ug/Kg	5.4	1.3	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND	ug/Kg	5.4	0.3	1	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND	ug/Kg	5.4	0.3	1	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND	ug/Kg	5.4	0.4	1	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND	ug/Kg	5.4	0.5	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.4	1.3	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND	ug/Kg	5.4	0.6	1	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND	ug/Kg	5.4	0.7	1	338582	04/24/24	04/24/24	TCN
Naphthalene	ND	ug/Kg	5.4	1.3	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND	ug/Kg	5.4	0.8	1	338582	04/24/24	04/24/24	TCN
Surrogates			Limits						
Dibromofluoromethane	101%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	102%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Toluene-d8	99%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	105%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	2,200	330	200	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND	ug/Kg	2,200	330	200	338434	04/22/24	04/23/24	DJL
Naphthalene	ND	ug/Kg	2,200	780	200	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND	ug/Kg	2,200	340	200	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND	ug/Kg	2,200	220	200	338434	04/22/24	04/23/24	DJL
Fluorene	ND	ug/Kg	2,200	270	200	338434	04/22/24	04/23/24	DJL
Phenanthrene	ND	ug/Kg	2,200	480	200	338434	04/22/24	04/23/24	DJL
Anthracene	ND	ug/Kg	2,200	300	200	338434	04/22/24	04/23/24	DJL

506597-006 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
									_
Fluoranthene	ND	ug/Kg	2,200	730	200	338434	04/22/24	04/23/24	DJL
Pyrene	ND	ug/Kg	2,200	790	200	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	ND	ug/Kg	2,200	230	200	338434	04/22/24	04/23/24	DJL
Chrysene	ND	ug/Kg	2,200	210	200	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	ND	ug/Kg	2,200	200	200	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	ND	ug/Kg	2,200	230	200	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	ND	ug/Kg	2,200	290	200	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	ND	ug/Kg	2,200	330	200	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND	ug/Kg	2,200	610	200	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	ND	ug/Kg	2,200	360	200	338434	04/22/24	04/23/24	DJL
Surrogates			Limits						
Nitrobenzene-d5	59%	%REC	27-125		200	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	96%	%REC	30-120		200	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	144%	%REC	33-155		200	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 7 Lab ID: 506597-007 Collected: 04/17/24 11:57

Matrix: Soil Basis: Dry

506597-007 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216										
Prep Method: METHOD			0/				000500	04/23/24	04/04/04	ADM
Moisture, Percent	3		%	ı		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	0.89	0.98	338460	04/22/24	04/23/24	SBW
Arsenic	5.5		mg/Kg	1.0	0.26	0.98	338460	04/22/24	04/23/24	SBW
Barium	18		mg/Kg	1.0	0.080	0.98	338460	04/22/24	04/23/24	SBW
Beryllium	0.13	J	mg/Kg	0.51	0.0063	0.98	338460	04/22/24	04/23/24	SBW
Cadmium	0.10	J	mg/Kg	0.51	0.037	0.98	338460	04/22/24	04/23/24	SBW
Chromium	30		mg/Kg	1.0	0.23	0.98	338460	04/22/24	04/23/24	SBW
Cobalt	5.2		mg/Kg	0.51	0.22	0.98	338460	04/22/24	04/23/24	SBW
Copper	30		mg/Kg	1.0	0.14	0.98	338460	04/22/24	04/23/24	SBW
Lead	7.0		mg/Kg	1.0	0.26	0.98	338460	04/22/24	04/23/24	SBW
Molybdenum	0.78	J	mg/Kg	1.0	0.12	0.98	338460	04/22/24	04/23/24	SBW
Nickel	25		mg/Kg	1.0	0.12	0.98	338460	04/22/24	04/23/24	SBW
Selenium	0.86	J	mg/Kg	3.0	0.55	0.98	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.51	0.062	0.98	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	3.0	0.34	0.98	338460	04/22/24	04/23/24	SBW
Vanadium	31		mg/Kg	1.0	0.052	0.98	338460	04/22/24	04/23/24	SBW
Zinc	17		mg/Kg	5.1	0.24	0.98	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	0.052	J	mg/Kg	0.16	0.039	1.1	338476	04/23/24	04/23/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338396	04/22/24	04/23/24	KMB
DRO C10-C28	11		mg/Kg	10	3.6	1	338396	04/22/24	04/23/24	KMB
ORO C28-C44	10	J	mg/Kg	21	3.6	1	338396	04/22/24	04/23/24	KMB
Surrogates				Limits						
n-Triacontane	88%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.2	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.2	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.2	1.1	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.2	1.3	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.2	1.8	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.2	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.2	1.8	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.2	1.5	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.2	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.2	1.5	1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.2	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.2	1.7	<u>.</u> 1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	5.2	2.2	1	338386	04/22/24	04/23/24	MES
4,4'-DDD	ND		ug/Kg	5.2	0.97	1	338386	04/22/24	04/23/24	MES
עטט ד,ד	140		ug/ivg	٥.٢	0.01	'	300000	J 1/LL/L7	0 1/20/27	IVILO

		Allalysis							
506597-007 Analyte	Result			MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Ko		1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Ko		1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Ko		1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/K(j 10	2.4	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Ko	100	32	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Ko	52	9.5	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	77%	%RE0	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	59%	%RE0	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Ko	52	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Ko		11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Ko		11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Ko		17	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Ko	•	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	•	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	•	24	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg		14	<u>.</u>	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/K	•	15	<u>'</u>	338386	04/22/24	04/23/24	MES
Surrogates	IND	ug/itt	Limits	10		330300	07/22/24	04/20/24	IVILO
Decachlorobiphenyl (PCB)	77%	%RE(1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Ko	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Ko	5.2	0.9	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Ko	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Ko	5.2	1.1	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	5.2	2.5	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Ko	5.2	0.9	1	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Ko		33	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Ko		0.7	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/K		1.1	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/K	•		1	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg		1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg		1.1	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg		0.9	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg		4.4	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kç		0.8	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kç	•	2.6	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kç ug/Kç		1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kç ug/Kç		0.5	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND			1.3	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Ko		0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride		ug/Ko			1				TCN
	ND	ug/Ko		1.3	1 4	338582	04/24/24	04/24/24	
1,2-Dichloroethane	ND	ug/Ko		1.1	<u> </u>	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Ko		0.5	1	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Ko		0.7	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Ko		0.8	1	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Ko		1.2	<u>1</u>	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Ko	5.2	0.5	1	338582	04/24/24	04/24/24	TCN

506597-007 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND	ug/Kg	5.2	1.7	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	5.2	1.1	1	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND	ug/Kg	5.2	1.5	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND	ug/Kg	5.2	0.7	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND	ug/Kg	5.2	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND	ug/Kg	5.2	0.7	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.2	0.7	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND	ug/Kg	5.2	0.6	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND	ug/Kg	10	0.8	1	338582	04/24/24	04/24/24	TCN
o-Xylene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	ND	ug/Kg	5.2	0.3	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND	ug/Kg	5.2	1.1	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND	ug/Kg	5.2	0.3	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND	ug/Kg	5.2	1.3	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND	ug/Kg	5.2	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND	ug/Kg	5.2	0.4	<u> </u>	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND	ug/Kg	5.2	0.3	<u>.</u>	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND	ug/Kg	5.2	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND	ug/Kg	5.2	0.3	<u>.</u>	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND	ug/Kg	5.2	0.4	<u> </u>	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.2	1.2	<u> </u>	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND	ug/Kg	5.2	0.6	<u> </u>	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND	ug/Kg	5.2	0.7	<u>.</u>	338582	04/24/24	04/24/24	TCN
Naphthalene	ND	ug/Kg	5.2	1.3	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND	ug/Kg ug/Kg	5.2	0.8	1	338582	04/24/24	04/24/24	TCN
Surrogates	IND	ug/Rg	Limits	0.0	'	330302	04/24/24	04/24/24	1011
Dibromofluoromethane	99%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	100%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Toluene-d8	98%		70-145		1 4				
		%REC %REC			1	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	101%	%HEU	70-145		1	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	21	3.1	2	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND	ug/Kg	21	3.1	2	338434	04/22/24	04/23/24	DJL
Naphthalene	ND	ug/Kg	21	7.4	2	338434	04/22/24	04/23/24	DJL
Acenaphthylene	15	J ug/Kg	21	3.3	2	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND	ug/Kg	21	2.1	2	338434	04/22/24	04/23/24	DJL
Fluorene	ND	ug/Kg	21	2.6	2	338434	04/22/24	04/23/24	DJL
Phenanthrene	5.8	J ug/Kg	21	4.5	2	338434	04/22/24	04/23/24	DJL
Anthracene	40	ug/Kg	21	2.9	2	338434	04/22/24	04/23/24	DJL

Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
19	J	ug/Kg	21	6.9	2	338434	04/22/24	04/23/24	DJL
20	J	ug/Kg	21	7.5	2	338434	04/22/24	04/23/24	DJL
6.5	J	ug/Kg	21	2.2	2	338434	04/22/24	04/23/24	DJL
13	J	ug/Kg	21	2.0	2	338434	04/22/24	04/23/24	DJL
46		ug/Kg	21	1.9	2	338434	04/22/24	04/23/24	DJL
11	J	ug/Kg	21	2.2	2	338434	04/22/24	04/23/24	DJL
30		ug/Kg	21	2.8	2	338434	04/22/24	04/23/24	DJL
43		ug/Kg	21	3.2	2	338434	04/22/24	04/23/24	DJL
6.5	J	ug/Kg	21	5.8	2	338434	04/22/24	04/23/24	DJL
43		ug/Kg	21	3.4	2	338434	04/22/24	04/23/24	DJL
			Limits						
59%		%REC	27-125		2	338434	04/22/24	04/23/24	DJL
74%		%REC	30-120		2	338434	04/22/24	04/23/24	DJL
80%		%REC	33-155		2	338434	04/22/24	04/23/24	DJL
	19 20 6.5 13 46 11 30 43 6.5 43	19 J 20 J 6.5 J 13 J 46 11 J 30 43 6.5 J 43	19 J ug/Kg 20 J ug/Kg 6.5 J ug/Kg 13 J ug/Kg 46 ug/Kg 11 J ug/Kg 30 ug/Kg 43 ug/Kg 43 ug/Kg 43 ug/Kg 43 ug/Kg 43 ug/Kg 43 wg/Kg	19 J ug/Kg 21 20 J ug/Kg 21 6.5 J ug/Kg 21 13 J ug/Kg 21 46 ug/Kg 21 11 J ug/Kg 21 30 ug/Kg 21 43 ug/Kg 21 5.5 J ug/Kg 21 Limits 59% %REC 27-125 74% %REC 30-120	19 J ug/Kg 21 6.9 20 J ug/Kg 21 7.5 6.5 J ug/Kg 21 2.2 13 J ug/Kg 21 2.0 46 ug/Kg 21 1.9 11 J ug/Kg 21 2.2 30 ug/Kg 21 2.2 30 ug/Kg 21 3.2 43 ug/Kg 21 3.2 6.5 J ug/Kg 21 3.2 6.5 J ug/Kg 21 3.4 Limits 59% %REC 27-125 74% %REC 30-120	19 J ug/Kg 21 6.9 2 20 J ug/Kg 21 7.5 2 6.5 J ug/Kg 21 2.2 2 13 J ug/Kg 21 2.0 2 46 ug/Kg 21 1.9 2 11 J ug/Kg 21 2.2 2 30 ug/Kg 21 2.2 2 30 ug/Kg 21 3.2 2 43 ug/Kg 21 3.2 2 6.5 J ug/Kg 21 3.2 2 6.5 J ug/Kg 21 3.4 2 Limits 59% %REC 27-125 2	19 J ug/Kg 21 6.9 2 338434 20 J ug/Kg 21 7.5 2 338434 6.5 J ug/Kg 21 2.2 2 338434 13 J ug/Kg 21 2.0 2 338434 46 ug/Kg 21 1.9 2 338434 11 J ug/Kg 21 2.2 2 338434 11 J ug/Kg 21 2.2 2 338434 30 ug/Kg 21 2.2 2 338434 30 ug/Kg 21 2.8 2 338434 43 ug/Kg 21 3.2 2 338434 6.5 J ug/Kg 21 5.8 2 338434 43 ug/Kg 21 3.4 2 338434 43 ug/Kg 21 3.4 2 338434 59% %REC 27-125 2 338434 74% %REC 30-120 2 338434	19 J ug/Kg 21 6.9 2 338434 04/22/24 20 J ug/Kg 21 7.5 2 338434 04/22/24 6.5 J ug/Kg 21 2.2 2 338434 04/22/24 13 J ug/Kg 21 2.0 2 338434 04/22/24 46 ug/Kg 21 1.9 2 338434 04/22/24 11 J ug/Kg 21 2.2 2 338434 04/22/24 11 J ug/Kg 21 2.2 2 338434 04/22/24 30 ug/Kg 21 2.2 2 338434 04/22/24 30 ug/Kg 21 2.8 2 338434 04/22/24 43 ug/Kg 21 3.2 2 338434 04/22/24 6.5 J ug/Kg 21 5.8 2 338434 04/22/24 43 ug/Kg 21 3.4 2 338434 04/22/24 43 ug/Kg 21 3.4 2 338434 04/22/24 59% %REC 27-125 2 338434 04/22/24 74% %REC 30-120 2 338434 04/22/24	19 J ug/Kg 21 6.9 2 338434 04/22/24 04/23/24 20 J ug/Kg 21 7.5 2 338434 04/22/24 04/23/24 6.5 J ug/Kg 21 2.2 2 338434 04/22/24 04/23/24 13 J ug/Kg 21 2.0 2 338434 04/22/24 04/23/24 46 ug/Kg 21 1.9 2 338434 04/22/24 04/23/24 11 J ug/Kg 21 2.2 2 338434 04/22/24 04/23/24 11 J ug/Kg 21 2.2 2 338434 04/22/24 04/23/24 30 ug/Kg 21 2.2 2 338434 04/22/24 04/23/24 30 ug/Kg 21 2.8 2 338434 04/22/24 04/23/24 43 ug/Kg 21 3.2 2 338434 04/22/24 04/23/24 6.5 J ug/Kg 21 5.8 2 338434 04/22/24 04/23/24 43 ug/Kg 21 3.4 2 338434 04/22/24 04/23/24 43 ug/Kg 21 3.4 2 338434 04/22/24 04/23/24 59% %REC 27-125 2 338434 04/22/24 04/23/24 74% %REC 30-120 2 338434 04/22/24 04/23/24

Sample ID: GRB 8 Lab ID: 506597-008 Collected: 04/17/24 11:59

Matrix: Soil Basis: Dry

506597-008 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216										
Prep Method: METHOD	ND		0/	- 4		- 4	220520	04/00/04	04/04/04	A DM
Moisture, Percent	ND		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	0.84	0.95	338460	04/22/24	04/23/24	SBW
Arsenic	2.0		mg/Kg	0.95	0.24	0.95	338460	04/22/24	04/23/24	SBW
Barium	49		mg/Kg	0.95	0.076	0.95	338460	04/22/24	04/23/24	SBW
Beryllium	0.10	J	mg/Kg	0.48	0.0060	0.95	338460	04/22/24	04/23/24	SBW
Cadmium	ND		mg/Kg	0.48	0.035	0.95	338460	04/22/24	04/23/24	SBW
Chromium	15		mg/Kg	0.95	0.22	0.95	338460	04/22/24	04/23/24	SBW
Cobalt	6.5		mg/Kg	0.48	0.21	0.95	338460	04/22/24	04/23/24	SBW
Copper	50		mg/Kg	0.95	0.13	0.95	338460	04/22/24	04/23/24	SBW
Lead	8.0		mg/Kg	0.95	0.25	0.95	338460	04/22/24	04/23/24	SBW
Molybdenum	0.34	J	mg/Kg	0.95	0.11	0.95	338460	04/22/24	04/23/24	SBW
Nickel	7.7		mg/Kg	0.95	0.11	0.95	338460	04/22/24	04/23/24	SBW
Selenium	0.93	J	mg/Kg	2.9	0.51	0.95	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.48	0.059	0.95	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.32	0.95	338460	04/22/24	04/23/24	SBW
Vanadium	70		mg/Kg	0.95	0.049	0.95	338460	04/22/24	04/23/24	SBW
Zinc	24		mg/Kg	4.8	0.22	0.95	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	0.091	J	mg/Kg	0.16	0.039	1.1	338476	04/23/24	04/23/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338396	04/22/24	04/23/24	KMB
DRO C10-C28	7.9	J	mg/Kg	10	3.5	1	338396	04/22/24	04/23/24	KMB
ORO C28-C44	9.1	J	mg/Kg	20	3.5	1	338396	04/22/24	04/23/24	KMB
Surrogates				Limits						
n-Triacontane	98%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A										
Prep Method: EPA 3546										
	ND		ug/Kg	5.0	0.99	1	338386	04/22/24	04/23/24	MES
Prep Method: EPA 3546	ND ND		ug/Kg ug/Kg	5.0 5.0	0.99	1	338386 338386	04/22/24	04/23/24 04/23/24	MES MES
Prep Method: EPA 3546 alpha-BHC										
Prep Method: EPA 3546 alpha-BHC beta-BHC	ND		ug/Kg ug/Kg	5.0	1.4	1	338386	04/22/24	04/23/24	MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC	ND ND		ug/Kg ug/Kg ug/Kg	5.0 5.0	1.4	1	338386 338386	04/22/24 04/22/24	04/23/24 04/23/24	MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0	1.4 1.0 1.2 1.7	1 1 1	338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24	MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0 5.0	1.4 1.0 1.2	1 1 1	338386 338386 338386	04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor	ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0 5.0 5.0	1.4 1.0 1.2 1.7 1.4	1 1 1 1 1	338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide	ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0 5.0 5.0 5.0	1.4 1.0 1.2 1.7 1.4 1.7	1 1 1 1 1 1	338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I	ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.4 1.0 1.2 1.7 1.4 1.7	1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.4 1.0 1.2 1.7 1.4 1.7 1.4	1 1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	ND N		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.4 1.0 1.2 1.7 1.4 1.7 1.4 1.5 1.5	1 1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE	ND N		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.4 1.0 1.2 1.7 1.4 1.7 1.4 1.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES

29 of 67

506597-008 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.0	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.0	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1.7	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	31	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	50	9.1	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	53%	%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	39%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	50	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	50	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	50	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	50	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	50	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	50	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	50	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	50	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	50	14	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	52%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	250	180	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	250	81	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	250	99	50	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	5,000	1,900	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	250	64	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	1,000		50	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	250	66	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	250	49	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	5,000	280	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	250	78	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	250	56	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	250	98	50	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN
2.00									

506597-008 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	250	85	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Toluene	ND		ug/Kg	250	51	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	250	46	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	250	54	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	500	120	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	250	42	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	54	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	250	72	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	250	42	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg ug/Kg	250	77	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	250	67	50	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg ug/Kg	250	56		338582	04/24/24	04/24/24	TCN
Naphthalene	ND			250	73	50	338582	04/24/24	04/24/24	TCN
•			ug/Kg		58	50	338582			
1,2,3-Trichlorobenzene	ND		ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
Surrogates	000/		0/ DEC	Limits			000500	04/04/04	04/04/04	TON
Dibromofluoromethane	96%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	98%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Toluene-d8	99%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	100%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	9.9	1.5	0.99	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	3.0	J	ug/Kg	9.9	1.5	0.99	338434	04/22/24	04/23/24	DJL
Naphthalene	ND		ug/Kg	9.9	3.6	0.99	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND		ug/Kg	9.9	1.6	0.99	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	9.9	1.0	0.99	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	9.9	1.2	0.99	338434	04/22/24	04/23/24	DJL
Phenanthrene	4.6	J	ug/Kg	9.9	2.2	0.99	338434	04/22/24	04/23/24	DJL
Anthracene	3.5	.1	ug/Kg	9.9	1.4	0.99	338434	04/22/24	04/23/24	DJL

506597-008 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Fluoranthene	4.9	J	ug/Kg	9.9	3.3	0.99	338434	04/22/24	04/23/24	DJL
Pyrene	6.9	J	ug/Kg	9.9	3.6	0.99	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	1.8	J	ug/Kg	9.9	1.1	0.99	338434	04/22/24	04/23/24	DJL
Chrysene	3.4	J	ug/Kg	9.9	0.95	0.99	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	6.8	J	ug/Kg	9.9	0.92	0.99	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	1.9	J	ug/Kg	9.9	1.0	0.99	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	2.4	J	ug/Kg	9.9	1.3	0.99	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	3.7	J	ug/Kg	9.9	1.5	0.99	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND		ug/Kg	9.9	2.8	0.99	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	6.9	J	ug/Kg	9.9	1.6	0.99	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	63%		%REC	27-125		0.99	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	67%		%REC	30-120		0.99	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	67%		%REC	33-155		0.99	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 9 Lab ID: 506597-009 Collected: 04/17/24 12:04

Matrix: Soil Basis: Dry

506597-009 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	5		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.1	0.91	0.98	338460	04/22/24	04/23/24	SBW
Arsenic	3.4		mg/Kg	1.0	0.26	0.98	338460	04/22/24	04/23/24	SBW
Barium	15		mg/Kg	1.0	0.082	0.98	338460	04/22/24	04/23/24	SBW
Beryllium	0.097	J	mg/Kg	0.52	0.0065	0.98	338460	04/22/24	04/23/24	SBW
Cadmium	0.079	J	mg/Kg	0.52	0.038	0.98	338460	04/22/24	04/23/24	SBW
Chromium	18		mg/Kg	1.0	0.23	0.98	338460	04/22/24	04/23/24	SBW
Cobalt	2.5		mg/Kg	0.52	0.23	0.98	338460	04/22/24	04/23/24	SBW
Copper	9.5		mg/Kg	1.0	0.15	0.98	338460	04/22/24	04/23/24	SBW
Lead	4.9		mg/Kg	1.0	0.27	0.98	338460	04/22/24	04/23/24	SBW
Molybdenum	0.30	J	mg/Kg	1.0	0.12	0.98	338460	04/22/24	04/23/24	SBW
Nickel	12		mg/Kg	1.0	0.12	0.98	338460	04/22/24	04/23/24	SBW
Selenium	ND		mg/Kg	3.1	0.56	0.98	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.52	0.064	0.98	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	3.1	0.35	0.98	338460	04/22/24	04/23/24	SBW
Vanadium	22		mg/Kg	1.0	0.053	0.98	338460	04/22/24	04/23/24	SBW
Zinc	13		mg/Kg	5.2	0.24	0.98	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	0.071	J	mg/Kg	0.17	0.042	1.2	338476	04/23/24	04/23/24	KAM
Prep Method: EPA 3580M	ND			10			000000	0.4/00/0.4	0.4/00/0.4	IZMD
GRO C6-C12	ND		mg/Kg	10	0.0	1	338396	04/22/24	04/23/24	KMB
DRO C10-C28	6.7	J	mg/Kg	10	3.6	1	338396	04/22/24	04/23/24	KMB
ORO C28-C44	6.5	J	mg/Kg	21	3.6	1	338396	04/22/24	04/23/24	KMB
Surrogates	000/		0/ DEO	Limits			000000	04/00/04	0.4/00/0.4	IZMD
n-Triacontane Method: EPA 8081A Prep Method: EPA 3546	89%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
alpha-BHC	ND		ug/Kg	5.2	1.0	0.98	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.2	1.4	0.98	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.2	1.0	0.98	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.2	1.3	0.98	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.2	1.8	0.98	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.2	1.4	0.98	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.2	1.7	0.98	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.2	1.5	0.98	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.2	1.6	0.98	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.2	1.5	0.98	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg ug/Kg	5.2	1.7	0.98	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg ug/Kg	5.2	1.7	0.98	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg ug/Kg	5.2	2.1	0.98	338386	04/22/24	04/23/24	MES
4,4'-DDD	ND		ug/Kg ug/Kg	5.2	0.96	0.98	338386	04/22/24	04/23/24	MES
4,4-000	טאו		ug/Ng	5.2	0.90	0.90	330300	04/22/24	04/23/24	IVIES

33 of 67

506597-009 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.2	1.2	0.98	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.2	1.5	0.98	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.2	1.8	0.98	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.4	0.98	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	32	0.98	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	52	9.4	0.98	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	82%	%REC	23-120		0.98	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	68%	%REC	24-120		0.98	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	52	13	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	52	11	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	52	11	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	52	17	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	52	17	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	52	16	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	52	24	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	52	13	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	52	15	0.98	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	98%	%REC	19-121		0.98	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	5.3	1.0	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	5.3	0.9	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	5.3	1.0	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	5.3	1.2	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	5.3	2.6	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	5.3	0.9	1	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	110	33	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	5.3	0.8	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	5.3	1.1	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	21		1	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	5.3	1.1	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	5.3	1.2	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	5.3	1.0	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	110	4.5	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	5.3	0.8	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	5.3	2.6	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	5.3	1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	5.3	1.4	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	5.3	0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	5.3	1.3	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	5.3	1.1	1	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	5.3	0.7	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	5.3	0.8	1	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	5.3	1.2	1	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Kg	5.3	0.5		338582	04/24/24	04/24/24	TCN

506597-009 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	5.3	1.7	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	5.3	1.1	1	338582	04/24/24	04/24/24	TCN
Toluene	ND		ug/Kg	5.3	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	5.3	1.5	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	5.3	0.7	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	5.3	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	5.3	0.7	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	5.3	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.3	0.8	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	5.3	0.7	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	11	0.8	1	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	5.3	0.3	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	5.3	1.1	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	5.3	0.3	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	5.3	1.3	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	5.3	0.4	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	5.3	0.4	1	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	5.3	0.4	1	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	5.3	0.4	1	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	5.3	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	5.3	0.4	<u> </u>	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	5.3	0.5	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	5.3	0.3	<u>.</u> 1	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	5.3	0.4	- 1	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	5.3	0.4	- 1	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND			5.3	0.3	- 1	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	5.3	0.4	1	338582	04/24/24	04/24/24	TCN
			ug/Kg			1	338582		04/24/24	
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.3	1.2	1		04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	5.3	0.6	1	338582	04/24/24		TCN
Hexachlorobutadiene	ND		ug/Kg	5.3	0.7	1	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	5.3	1.3	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	5.3	8.0	1	338582	04/24/24	04/24/24	TCN
Surrogates	1000/		0/050	Limits		4	000500	0.1/0.1/0.1	0.1/0.1/0.1	TON
Dibromofluoromethane	102%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	101%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Toluene-d8	98%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	102%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	110	16	10	338434	04/22/24	04/25/24	DJL
2-Methylnaphthalene	ND		ug/Kg	110	16	10	338434	04/22/24	04/25/24	DJL
Naphthalene	ND		ug/Kg	110	38	10	338434	04/22/24	04/25/24	DJL
Acenaphthylene	ND		ug/Kg	110	17	10	338434	04/22/24	04/25/24	DJL
Acenaphthene	18	J	ug/Kg	110	11	10	338434	04/22/24	04/25/24	DJL
Fluorene	23	J	ug/Kg	110	13	10	338434	04/22/24	04/25/24	DJL
Phenanthrene	220		ug/Kg	110	23	10	338434	04/22/24	04/25/24	DJL
Anthracene	130		ug/Kg	110	15	10	338434	04/22/24	04/25/24	DJL

506597-009 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Fluoranthene	750		ug/Kg	110	35	10	338434	04/22/24	04/25/24	DJL
Pyrene	900		ug/Kg	110	38	10	338434	04/22/24	04/25/24	DJL
Benzo(a)anthracene	400		ug/Kg	110	11	10	338434	04/22/24	04/25/24	DJL
Chrysene	750		ug/Kg	110	10	10	338434	04/22/24	04/25/24	DJL
Benzo(b)fluoranthene	600		ug/Kg	110	9.8	10	338434	04/22/24	04/25/24	DJL
Benzo(k)fluoranthene	240		ug/Kg	110	11	10	338434	04/22/24	04/25/24	DJL
Benzo(a)pyrene	220		ug/Kg	110	14	10	338434	04/22/24	04/25/24	DJL
Indeno(1,2,3-cd)pyrene	180		ug/Kg	110	16	10	338434	04/22/24	04/25/24	DJL
Dibenz(a,h)anthracene	36	J	ug/Kg	110	30	10	338434	04/22/24	04/25/24	DJL
Benzo(g,h,i)perylene	200		ug/Kg	53	8.7	5	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	77%		%REC	27-125		10	338434	04/22/24	04/25/24	DJL
2-Fluorobiphenyl	84%		%REC	30-120		10	338434	04/22/24	04/25/24	DJL
Terphenyl-d14	84%		%REC	33-155		10	338434	04/22/24	04/25/24	DJL

Sample ID: GRB 10 Lab ID: 506597-010 Collected: 04/17/24 12:07

Matrix: Soil Basis: Dry

506597-010 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	ND		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	0.87	0.98	338460	04/22/24	04/23/24	SBW
Arsenic	5.6		mg/Kg	0.99	0.25	0.98	338460	04/22/24	04/23/24	SBW
Barium	35		mg/Kg	0.99	0.079	0.98	338460	04/22/24	04/23/24	SBW
Beryllium	0.079	J	mg/Kg	0.50	0.0062	0.98	338460	04/22/24	04/23/24	SBW
Cadmium	0.083	J	mg/Kg	0.50	0.036	0.98	338460	04/22/24	04/23/24	SBW
Chromium	24		mg/Kg	0.99	0.23	0.98	338460	04/22/24	04/23/24	SBW
Cobalt	11		mg/Kg	0.50	0.22	0.98	338460	04/22/24	04/23/24	SBW
Copper	64		mg/Kg	0.99	0.14	0.98	338460	04/22/24	04/23/24	SBW
Lead	40		mg/Kg	0.99	0.26	0.98	338460	04/22/24	04/23/24	SBW
Molybdenum	0.76	J	mg/Kg	0.99	0.11	0.98	338460	04/22/24	04/23/24	SBW
Nickel	15		mg/Kg	0.99	0.12	0.98	338460	04/22/24	04/23/24	SBW
Selenium	1.3	J	mg/Kg	3.0	0.54	0.98	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.50	0.061	0.98	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	3.0	0.33	0.98	338460	04/22/24	04/23/24	SBW
Vanadium	95		mg/Kg	0.99	0.051	0.98	338460	04/22/24	04/23/24	SBW
Zinc	34		mg/Kg	5.0	0.23	0.98	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	0.098	J	mg/Kg	0.15	0.037	1.1	338476	04/23/24	04/23/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338396	04/22/24	04/23/24	KMB
DRO C10-C28	8.1	J	mg/Kg	10	3.5	1	338396	04/22/24	04/23/24	KMB
ORO C28-C44	7.9	J	mg/Kg	20	3.5	1	338396	04/22/24	04/23/24	KMB
Surrogates				Limits						
n-Triacontane	89%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.0	0.99	0.99	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.0	1.4	0.99	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.0	1.0	0.99	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.0	1.2	0.99	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.0	1.7	0.99	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.0	1.4	0.99	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	1.7	0.99	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.0	1.4	0.99	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.0	1.5	0.99	338386	04/22/24	04/23/24	MES
Dielann			ug/Kg	5.0	1.5	0.99	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND									
	ND ND		ug/Kg	5.0	1.7	0.99	338386	04/22/24	04/23/24	MES
4,4'-DDE				5.0 5.0	1.7	0.99	338386 338386	04/22/24 04/22/24	04/23/24 04/23/24	MES MES
4,4'-DDE Endrin	ND		ug/Kg							

506597-010 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.0	1.2	0.99	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.0	1.5	0.99	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.0	1.7	0.99	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.3	0.99	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	31	0.99	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	50	9.1	0.99	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	99%	%REC	23-120		0.99	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	93%	%REC	24-120		0.99	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	50	13	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	50	11	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	50	11	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	50	16	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	50	17	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	50	16	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	50	23	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	50	13	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	50	14	0.99	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	114%	%REC	19-121		0.99	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	250	81	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	250	100	50	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	5,100	1,900	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	250	65	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	1,000		50	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	250	66	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	250	50	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	5,100	280	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	250	79	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	250	99	50	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN
Bromodichioromethane									

506597-010 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	250	86	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Toluene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	250	34	50	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	250	42	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	250	46	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	510	120	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	250	73	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	250	53	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	250	78	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	250	73	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
Surrogates				Limits						
Dibromofluoromethane	98%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	100%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Toluene-d8	99%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	100%		%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	2.7	J	ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
Naphthalene	6.6	J	ug/Kg	10	3.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND		ug/Kg	10	1.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	10	1.3	1	338434	04/22/24	04/23/24	DJL
Phenanthrene	11		ug/Kg	10	2.2	1	338434	04/22/24	04/23/24	DJL
Anthracene	5.9	J .	ug/Kg	. 10	1.4	. 1	338434	04/22/24	04/23/24	DJL

506597-010 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
	47		/17		0.4		000404	0.4/00/04	0.4/00/0.4	- D.II
Fluoranthene	17		ug/Kg	10	3.4	ļ	338434	04/22/24	04/23/24	DJL
Pyrene	9.5	J	ug/Kg	10	3.7	1	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	3.3	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Chrysene	7.8	J	ug/Kg	10	0.98	1	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	12		ug/Kg	10	0.94	1	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	3.1	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	3.0	J	ug/Kg	10	1.4	1	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	5.3	J	ug/Kg	10	1.6	1	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND		ug/Kg	10	2.9	1	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	7.0	J	ug/Kg	10	1.7	1	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	46%		%REC	27-125		1	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	45%		%REC	30-120		1	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	49%		%REC	33-155		1	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 11 Lab ID: 506597-011 Collected: 04/17/24 12:14

Matrix: Soil Basis: Dry

506597-011 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	1		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B	•		70	•			000000	04/20/24	04/24/24	7 (1 (1))
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	0.85	0.95	338460	04/22/24	04/23/24	SBW
Arsenic	4.8		mg/Kg	0.96	0.24	0.95	338460	04/22/24	04/23/24	SBW
Barium	18		mg/Kg	0.96	0.077	0.95	338460	04/22/24	04/23/24	SBW
Beryllium	0.10	J	mg/Kg	0.48	0.0060	0.95	338460	04/22/24	04/23/24	SBW
Cadmium	0.15	J	mg/Kg	0.48	0.035	0.95	338460	04/22/24	04/23/24	SBW
Chromium	26		mg/Kg	0.96	0.22	0.95	338460	04/22/24	04/23/24	SBW
Cobalt	4.9		mg/Kg	0.48	0.21	0.95	338460	04/22/24	04/23/24	SBW
Copper	47		mg/Kg	0.96	0.14	0.95	338460	04/22/24	04/23/24	SBW
Lead	25		mg/Kg	0.96	0.25	0.95	338460	04/22/24	04/23/24	SBW
Molybdenum	0.94	J	mg/Kg	0.96	0.11	0.95	338460	04/22/24	04/23/24	SBW
Nickel	22		mg/Kg	0.96	0.11	0.95	338460	04/22/24	04/23/24	SBW
Selenium	0.80	J	mg/Kg	2.9	0.52	0.95	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.48	0.059	0.95	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.32	0.95	338460	04/22/24	04/23/24	SBW
Vanadium	29		mg/Kg	0.96	0.050	0.95	338460	04/22/24	04/23/24	SBW
Zinc	26		mg/Kg	4.8	0.23	0.95	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 2520M	0.067	J	mg/Kg	0.15	0.037	1.1	338476	04/23/24	04/23/24	KAM
Prep Method: EPA 3580M GRO C6-C12	ND		ma/l/a	10		1	338396	04/22/24	04/23/24	KMB
DRO C10-C28	21		mg/Kg mg/Kg	10	3.5	<u>'</u> 1	338396	04/22/24	04/23/24	KMB
ORO C28-C44	12	J	mg/Kg	20	3.5	1	338396	04/22/24	04/23/24	KMB
Surrogates	12	<u> </u>	mg/rtg	Limits	5.5	'	330330	04/22/24	04/23/24	KIND
n-Triacontane	91%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546						'				
alpha-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.1	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	2.1	1	338386	04/22/24	04/23/24	MES
	ND		ug/Kg	5.1	0.95		338386	04/22/24	04/23/24	MES

		Allalysis F							
506597-011 Analyte	Result		RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	32	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	51	9.3	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	76%	%REC			1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	63%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	51	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	51	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	51	15	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	79%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	5.1	2.5	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	100	32	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	20		1	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	5.1	0.9	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	100	4.3	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	5.1	2.5	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	5.1	1.3	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND ND		5.1	1.2	1	338582	04/24/24	04/24/24	TCN
		ug/Kg			1 4				
Dibromomethane	ND	ug/Kg	5.1	0.5	I	338582	04/24/24	04/24/24	TCN

506597-011 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND		ug/Kg	5.1	1.6	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Toluene	ND		ug/Kg	5.1	0.9	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND		ug/Kg	5.1	1.5	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	10	0.8	1	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	5.1	1.3	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Surrogates				Limits						
Dibromofluoromethane	100%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	102%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Toluene-d8	97%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	103%		%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	20	3.1	2	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	3.2	J	ug/Kg	20	3.1	2	338434	04/22/24	04/23/24	DJL
Naphthalene	ND		ug/Kg	20	7.3	2	338434	04/22/24	04/23/24	DJL
Acenaphthylene	14	J	ug/Kg	20	3.2	2	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	20	2.1	2	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	20	2.5	2	338434	04/22/24	04/23/24	DJL
Phenanthrene	6.7	J	ug/Kg	20	4.5	2	338434	04/22/24	04/23/24	DJL
Anthracene	31		ug/Kg	20	2.8	. 2	338434	04/22/24	04/23/24	DJL

506597-011 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
								0.1/0.0/0.1	21/22/21	
Fluoranthene	20	J	ug/Kg	20	6.8	2	338434	04/22/24	04/23/24	DJL
Pyrene	26		ug/Kg	20	7.4	2	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	15	J	ug/Kg	20	2.2	2	338434	04/22/24	04/23/24	DJL
Chrysene	18	J	ug/Kg	20	2.0	2	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	60		ug/Kg	20	1.9	2	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	19	J	ug/Kg	20	2.1	2	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	36		ug/Kg	20	2.7	2	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	74		ug/Kg	20	3.1	2	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	11	J	ug/Kg	20	5.7	2	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	120		ug/Kg	20	3.4	2	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	65%		%REC	27-125		2	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	74%		%REC	30-120		2	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	78%		%REC	33-155		2	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 12 Lab ID: 506597-012 Collected: 04/17/24 12:35

Matrix: Soil Basis: Dry

506597-012 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	4		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.1	0.90	0.98	338460	04/22/24	04/23/24	SBW
Arsenic	2.5		mg/Kg	1.0	0.26	0.98	338460	04/22/24	04/23/24	SBW
Barium	19		mg/Kg	1.0	0.081	0.98	338460	04/22/24	04/23/24	SBW
Beryllium	0.094	J	mg/Kg	0.51	0.0064	0.98	338460	04/22/24	04/23/24	SBW
Cadmium	0.11	J	mg/Kg	0.51	0.037	0.98	338460	04/22/24	04/23/24	SBW
Chromium	9.4		mg/Kg	1.0	0.23	0.98	338460	04/22/24	04/23/24	SBW
Cobalt	1.6		mg/Kg	0.51	0.23	0.98	338460	04/22/24	04/23/24	SBW
Copper	11		mg/Kg	1.0	0.14	0.98	338460	04/22/24	04/23/24	SBW
Lead	15		mg/Kg	1.0	0.27	0.98	338460	04/22/24	04/23/24	SBW
Molybdenum	0.25	J	mg/Kg	1.0	0.12	0.98	338460	04/22/24	04/23/24	SBW
Nickel	5.8		mg/Kg	1.0	0.12	0.98	338460	04/22/24	04/23/24	SBW
Selenium	ND		mg/Kg	3.1	0.55	0.98	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.51	0.063	0.98	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	3.1	0.34	0.98	338460	04/22/24	04/23/24	SBW
Vanadium	12		mg/Kg	1.0	0.053	0.98	338460	04/22/24	04/23/24	SBW
Zinc	26		mg/Kg	5.1	0.24	0.98	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	0.075	J	mg/Kg	0.16	0.039	1.1	338476	04/23/24	04/23/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		0.99	338396	04/22/24	04/23/24	KMB
DRO C10-C28	12		mg/Kg	10	3.6	0.99	338396	04/22/24	04/23/24	KMB
ORO C28-C44	11	J	mg/Kg	21	3.6	0.99	338396	04/22/24	04/23/24	KMB
Surrogates				Limits						
n-Triacontane	75%		%REC	70-130		0.99	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.3	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.3	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.3	1.1	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.3	1.3	1	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.3	1.8	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.3	1.4	1	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.3	1.8	1	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.3	1.5	1	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.3	1.6	1	338386	04/22/24	04/23/24	MES
Dicidilii			ug/Kg	5.3	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		- 5,							
	ND ND		ug/Kg	5.3	1.7	1	338386	04/22/24	04/23/24	MES
4,4'-DDE				5.3 5.3	1.7 1.7	1	338386 338386	04/22/24 04/22/24	04/23/24 04/23/24	MES MES
4,4'-DDE Endrin	ND		ug/Kg							

		iaiyəiə ii							
506597-012 Analyte		Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.3	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.3	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.3	1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	11	2.4	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	110	33	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	53	9.6	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	82%	%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	60%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	53	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	53	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	53	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	53	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	53	18	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	53	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	53	24	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	53	14	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	53	15	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	82%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	5.2	0.9	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	5.2	1.2	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	5.2	2.6	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	5.2	0.9	1	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	100	33	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	5.2	0.7	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	5.2	1.1	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	21		1	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	5.2	1.2	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	5.2	0.9	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	100	4.5	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	5.2	0.8	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	5.2	2.6	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	5.2	1.3	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	5.2	0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	5.2	1.3	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	5.2	1.1	1	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	5.2	0.7	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	5.2	0.8	1	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	5.2	1.2	1	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
	140	ug/ivg	5.2	0.0	'	55555£	♥ ./ L ./ L¬	5 1/L 1/LT	1014

506597-012 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND	ug/Kg	5.2	1.7	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	5.2	1.1	1	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	5.2	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND	ug/Kg	5.2	1.5	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND	ug/Kg	5.2	0.7	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND	ug/Kg	5.2	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND	ug/Kg	5.2	0.7	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.2	0.8	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND	ug/Kg	5.2	0.6	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND	ug/Kg	10	0.8	1	338582	04/24/24	04/24/24	TCN
o-Xylene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	ND	ug/Kg	5.2	0.3	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND	ug/Kg	5.2	1.1	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND	ug/Kg	5.2	0.3	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND	ug/Kg	5.2	1.3	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND	ug/Kg	5.2	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND	ug/Kg	5.2	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND	ug/Kg	5.2	0.5	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND	ug/Kg	5.2	0.3	<u>.</u>	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND	ug/Kg	5.2	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND	ug/Kg	5.2	0.3	1	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND	ug/Kg	5.2	0.4	1	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND	ug/Kg	5.2	0.4	<u> </u>	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.2	1.2	<u> </u>	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND	ug/Kg	5.2	0.6	<u>'</u>	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND	ug/Kg	5.2	0.7	<u>.</u> 1	338582	04/24/24	04/24/24	TCN
Naphthalene	ND	ug/Kg	5.2	1.3	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND	ug/Kg ug/Kg	5.2	0.8	1	338582	04/24/24	04/24/24	TCN
Surrogates	IND	ug/Rg	Limits	0.0	'	330302	04/24/24	04/24/24	1011
Dibromofluoromethane	100%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	99%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Toluene-d8	100%		70-145		- 1			04/24/24	
		%REC %REC	70-145		1	338582	04/24/24		TCN
Bromofluorobenzene	105%	%REU	70-145		1	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	52	7.9	5	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND	ug/Kg	52	7.9	5	338434	04/22/24	04/23/24	DJL
Naphthalene	ND	ug/Kg	52	19	5	338434	04/22/24	04/23/24	DJL
Acenaphthylene	52	J ug/Kg	52	8.3	5	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND	ug/Kg	52	5.4	5	338434	04/22/24	04/23/24	DJL
Fluorene	ND	ug/Kg	52	6.5	5	338434	04/22/24	04/23/24	DJL
Phenanthrene	29	J ug/Kg	52	11	5	338434	04/22/24	04/23/24	DJL
Anthracene	86	ug/Kg	52	7.3	5	338434	04/22/24	04/23/24	DJL

506597-012 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Fluoranthene	88		ug/Kg	52	18	5	338434	04/22/24	04/23/24	DJL
Pyrene	75		ug/Kg	52	19	5	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	27	J	ug/Kg	52	5.6	5	338434	04/22/24	04/23/24	DJL
Chrysene	47	J	ug/Kg	52	5.0	5	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	120		ug/Kg	52	4.8	5	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	35	J	ug/Kg	52	5.5	5	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	43	J	ug/Kg	52	7.0	5	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	93		ug/Kg	52	8.0	5	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	20	J	ug/Kg	52	15	5	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	140		ug/Kg	52	8.6	5	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	74%		%REC	27-125		5	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	81%		%REC	30-120		5	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	78%		%REC	33-155		5	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 13 Lab ID: 506597-013 Collected: 04/17/24 12:37

Matrix: Soil Basis: Dry

506597-013 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	2		%	1		1	338539	04/23/24	04/24/24	ARM
Method: EPA 6010B									• ,, = ,, = ,	
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	0.89	0.99	338460	04/22/24	04/23/24	SBW
Arsenic	1.8		mg/Kg	1.0	0.26	0.99	338460	04/22/24	04/23/24	SBW
Barium	12		mg/Kg	1.0	0.080	0.99	338460	04/22/24	04/23/24	SBW
Beryllium	0.077	J	mg/Kg	0.51	0.0063	0.99	338460	04/22/24	04/23/24	SBW
Cadmium	0.17	J	mg/Kg	0.51	0.037	0.99	338460	04/22/24	04/23/24	SBW
Chromium	5.8		mg/Kg	1.0	0.23	0.99	338460	04/22/24	04/23/24	SBW
Cobalt	0.84		mg/Kg	0.51	0.22	0.99	338460	04/22/24	04/23/24	SBW
Copper	4.7		mg/Kg	1.0	0.14	0.99	338460	04/22/24	04/23/24	SBW
Lead	5.5		mg/Kg	1.0	0.26	0.99	338460	04/22/24	04/23/24	SBW
Molybdenum	ND		mg/Kg	1.0	0.12	0.99	338460	04/22/24	04/23/24	SBW
Nickel	4.2		mg/Kg	1.0	0.12	0.99	338460	04/22/24	04/23/24	SBW
Selenium	ND		mg/Kg	3.0	0.55	0.99	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.51	0.062	0.99	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	3.0	0.34	0.99	338460	04/22/24	04/23/24	SBW
Vanadium	6.4		mg/Kg	1.0	0.052	0.99	338460	04/22/24	04/23/24	SBW
Zinc	14		mg/Kg	5.1	0.24	0.99	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	0.050	J	mg/Kg	0.16	0.039	1.1	338476	04/23/24	04/23/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338396	04/22/24	04/23/24	KMB
DRO C10-C28	7.1	J	mg/Kg	10	3.5	1	338396	04/22/24	04/23/24	KMB
ORO C28-C44	8.0	J	mg/Kg	20	3.5	1	338396	04/22/24	04/23/24	KMB
Surrogates				Limits						
n-Triacontane	89%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	1.0	0.99	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.1	1.4	0.99	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.1	1.0	0.99	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.1	1.2	0.99	338386	04/22/24	04/23/24	MES
Heptachlor	ND		ug/Kg	5.1	1.7	0.99	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	5.1	1.4	0.99	338386	04/22/24	04/23/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	1.7	0.99	338386	04/22/24	04/23/24	MES
Endosulfan I	ND		ug/Kg	5.1	1.4	0.99	338386	04/22/24	04/23/24	MES
Dieldrin	ND		ug/Kg	5.1	1.5	0.99	338386	04/22/24	04/23/24	MES
4,4'-DDE	ND		ug/Kg	5.1	1.5	0.99	338386	04/22/24	04/23/24	MES
Endrin	ND		ug/Kg	5.1	1.7	0.99	338386	04/22/24	04/23/24	MES
Endosulfan II	ND		ug/Kg	5.1	1.7	0.99	338386	04/22/24	04/23/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	2.1	0.99	338386	04/22/24	04/23/24	MES
	ND		ug/Kg		0.94	0.99	338386	04/22/24		MES

49 of 67

506597-013 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND		ug/Kg	5.1	1.2	0.99	338386	04/22/24	04/23/24	MES
Endrin ketone	ND		ug/Kg	5.1	1.5	0.99	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND		ug/Kg	5.1	1.7	0.99	338386	04/22/24	04/23/24	MES
Methoxychlor	ND		ug/Kg	10	2.3	0.99	338386	04/22/24	04/23/24	MES
Toxaphene	ND		ug/Kg	100	31	0.99	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	19	J	ug/Kg	51	9.2	0.99	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
TCMX	80%		%REC	23-120		0.99	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	83%		%REC	24-120		0.99	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	51	13	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND		ug/Kg	51	11	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND		ug/Kg	51	11	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND		ug/Kg	51	16	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND		ug/Kg	51	17	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND		ug/Kg	51	16	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND		ug/Kg	51	23	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND		ug/Kg	51	13	0.99	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND		ug/Kg	51	15	0.99	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
Decachlorobiphenyl (PCB)	106%		%REC	19-121		0.99	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B										
Freon 12	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Chloromethane	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Bromomethane	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Chloroethane	ND		ug/Kg	5.1	2.5	1	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Acetone	ND		ug/Kg	100	32	1	338582	04/24/24	04/24/24	TCN
Freon 113	ND		ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND		ug/Kg	20		1	338582	04/24/24	04/24/24	TCN
MTBE	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND		ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND		ug/Kg	5.1	0.9	1	338582	04/24/24	04/24/24	TCN
2-Butanone	ND		ug/Kg	100	4.4	1	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND		ug/Kg	5.1	2.5	1	338582	04/24/24	04/24/24	TCN
Chloroform	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND		ug/Kg	5.1	1.3	1	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND		ug/Kg	5.1	1.3	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND		ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Benzene	ND		ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND		ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND		ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND		ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
	ND		ug/Kg	5.1	0.5				04/24/24	TCN

506597-013 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND	ug/Kg	5.1	1.6	1	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	5.1	1.1	1	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND	ug/Kg	5.1	1.5	1	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND	ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND	ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND	ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND	ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5.1	0.7	1	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND	ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND	ug/Kg	10	0.8	1	338582	04/24/24	04/24/24	TCN
o-Xylene	ND	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
Styrene	ND	ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
Bromoform	ND	ug/Kg	5.1	1.0	1	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND	ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND	ug/Kg	5.1	1.3	1	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND	ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND	ug/Kg	5.1	0.5	1	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND	ug/Kg	5.1	0.4	<u>.</u>	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND	ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND	ug/Kg	5.1	0.4	<u>'</u>	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND	ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND	ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND	ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND	ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND	ug/Kg	5.1	0.3	1	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND	ug/Kg ug/Kg	5.1	0.4	1	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND	ug/Kg	5.1	0.3	<u>'</u>	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene					1	338582		04/24/24	
	ND	ug/Kg	5.1	0.4	1		04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.1	1.2	1	338582	04/24/24		TCN
1,2,4-Trichlorobenzene	ND	ug/Kg	5.1	0.6	<u> </u>	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND	ug/Kg	5.1	0.6	1	338582	04/24/24	04/24/24	TCN
Naphthalene	ND	ug/Kg	5.1	1.2	1	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND	ug/Kg	5.1	0.8	1	338582	04/24/24	04/24/24	TCN
Surrogates			Limits						
Dibromofluoromethane	99%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	98%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Toluene-d8	101%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	104%	%REC	70-145		1	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND	ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
Naphthalene	ND	ug/Kg	10	3.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthylene	11	ug/Kg	10	1.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Fluorene	ND	ug/Kg	10	1.3	1	338434	04/22/24	04/23/24	DJL
Phenanthrene									
i nonantinono	5.1	J ug/Kg	10	2.2	1	338434	04/22/24	04/23/24	DJL

506597-013 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Fluoranthene	10		ug/Kg	10	3.4	1	338434	04/22/24	04/23/24	DJL
Pyrene	9.2	J	ug/Kg	10	3.7	1	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	6.5	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Chrysene	7.1	J	ug/Kg	10	0.98	1	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	92		ug/Kg	10	0.94	1	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	48		ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	27		ug/Kg	10	1.4	1	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	35		ug/Kg	10	1.6	1	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	7.1	J	ug/Kg	10	2.9	1	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	26		ug/Kg	10	1.7	1	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	81%		%REC	27-125		1	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	85%		%REC	30-120		1	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	79%		%REC	33-155		1	338434	04/22/24	04/23/24	DJL

Sample ID: GRB 14 Lab ID: 506597-014 Collected: 04/17/24 12:53

Matrix: Soil Basis: Dry

Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
ND		0/				000500	0.4/00/0.4	04/04/04	A D. A
ND		%	1		1	338539	04/23/24	04/24/24	ARM
ND				0.88	0.99		04/22/24		SBW
									SBW
			1.0	0.080	0.99				SBW
	J				0.99				SBW
									SBW
		mg/Kg							SBW
		mg/Kg							SBW
									SBW
				0.26					SBW
0.28	J	mg/Kg	1.0	0.11	0.99				SBW
5.4		mg/Kg	1.0	0.12	0.99	338460	04/22/24	04/23/24	SBW
1.2	J	mg/Kg	3.0	0.54	0.99	338460	04/22/24	04/23/24	SBW
ND		mg/Kg	0.50	0.062	0.99	338460	04/22/24	04/23/24	SBW
ND		mg/Kg	3.0	0.34	0.99	338460	04/22/24	04/23/24	SBW
82		mg/Kg	1.0	0.051	0.99	338460	04/22/24	04/23/24	SBW
33		mg/Kg	5.0	0.23	0.99	338460	04/22/24	04/23/24	SBW
0.092	J	mg/Kg	0.16	0.040	1.1	338476	04/23/24	04/23/24	KAM
ND		mg/Kg	10		1	338396	04/22/24	04/23/24	KMB
12		mg/Kg	10	3.5	1	338396	04/22/24	04/23/24	KMB
15	J	mg/Kg	20	3.5	1	338396	04/22/24	04/23/24	KMB
			Limits						
93%		%REC	70-130		1	338396	04/22/24	04/23/24	KMB
ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
IND						338386	04/00/04	04/00/04	MEC
ND		ug/Kg	5.1	1.0	1	330300	04/22/24	04/23/24	MES
			5.1 5.1	1.0	1	338386	04/22/24	04/23/24	MES
ND		ug/Kg							
ND ND		ug/Kg ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
ND ND ND		ug/Kg ug/Kg ug/Kg	5.1 5.1	1.2 1.7	1	338386 338386	04/22/24 04/22/24	04/23/24 04/23/24	MES MES
ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1	1.2 1.7 1.4	1 1 1	338386 338386 338386	04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24	MES MES MES
ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1	1.2 1.7 1.4 1.7	1 1 1	338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES
ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1	1.2 1.7 1.4 1.7	1 1 1 1	338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES
ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1	1.2 1.7 1.4 1.7 1.4 1.6	1 1 1 1 1	338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES
ND N		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	1.2 1.7 1.4 1.7 1.4 1.6 1.5	1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES MES MES MES
ND ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1 5.1 5.1	1.2 1.7 1.4 1.7 1.4 1.6 1.5	1 1 1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES MES
	ND 2.4 49 0.079 ND 9.0 9.6 47 6.0 0.28 5.4 1.2 ND ND 82 33 0.092 ND 12 15	ND 2.4 49 0.079 J ND 9.0 9.6 47 6.0 0.28 J 5.4 1.2 J ND ND ND 82 33 0.092 J ND 12 15 J	ND % ND mg/Kg 2.4 mg/Kg 49 mg/Kg 0.079 J mg/Kg 9.0 mg/Kg 9.6 mg/Kg 47 mg/Kg 6.0 mg/Kg 5.4 mg/Kg ND mg/Kg ND mg/Kg 33 mg/Kg 0.092 J mg/Kg 12 mg/Kg 15 J mg/Kg 93% %REC	ND	ND % 1 ND mg/Kg 3.0 0.88 2.4 mg/Kg 1.0 0.25 49 mg/Kg 1.0 0.080 0.079 J mg/Kg 0.50 0.0063 ND mg/Kg 0.50 0.036 9.0 mg/Kg 1.0 0.23 9.6 mg/Kg 1.0 0.24 6.0 mg/Kg 1.0 0.14 6.0 mg/Kg 1.0 0.14 6.0 mg/Kg 1.0 0.11 5.4 mg/Kg 1.0 0.12 1.2 J mg/Kg 3.0 0.54 ND mg/Kg 0.50 0.062 ND mg/Kg 1.0 0.051 33 mg/Kg 1.0 0.051 33 mg/Kg 10 0.23 0.092 J mg/Kg 10 0.040 ND mg/Kg 10 3.5	ND	ND % 1 1 338539 ND mg/Kg 3.0 0.88 0.99 338460 2.4 mg/Kg 1.0 0.25 0.99 338460 49 mg/Kg 1.0 0.080 0.99 338460 0.079 J mg/Kg 0.50 0.0063 0.99 338460 ND mg/Kg 0.50 0.036 0.99 338460 9.0 mg/Kg 1.0 0.23 0.99 338460 9.6 mg/Kg 1.0 0.14 0.99 338460 47 mg/Kg 1.0 0.14 0.99 338460 6.0 mg/Kg 1.0 0.11 0.99 338460 6.0 mg/Kg 1.0 0.11 0.99 338460 5.4 mg/Kg 1.0 0.11 0.99 338460 ND mg/Kg 3.0 0.54 0.99 338460 ND mg/Kg 3.0	ND	ND

506597-014 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND		ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	2.1	J	ug/Kg	5.1	1.8	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND		ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND		ug/Kg	100	32	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND		ug/Kg	51	9.3	1	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
TCMX	63%		%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	52%		%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	51	15	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND		ug/Kg	51	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND		ug/Kg	51	19	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND		ug/Kg	51	18	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND		ug/Kg	51	22	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND		ug/Kg	51	6.7	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND		ug/Kg	51	25	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND		ug/Kg	51	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND		ug/Kg	51	14	1	338386	04/22/24	04/23/24	MES
Surrogates				Limits						
Decachlorobiphenyl (PCB)	96%		%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B										
Freon 12	ND		ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND		ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND		ug/Kg	250	81	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND		ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND		ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND		ug/Kg	250	100	50	338582	04/24/24	04/24/24	TCN
Acetone	ND		ug/Kg	5,100	1,900	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND		ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND		ug/Kg	250	65	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND		ug/Kg	1,000		50	338582	04/24/24	04/24/24	TCN
MTBE	ND		ug/Kg	250	66	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND		ug/Kg	250	50	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND		ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND		ug/Kg	5,100	280	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND		ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND		ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND		ug/Kg	250	79	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND		ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND		ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND		ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND		ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND		ug/Kg	250	99	50	338582	04/24/24	04/24/24	TCN
Benzene	ND		ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND		ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND		ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND		ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN

506597-014 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND	ug/Kg	250	86	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND	ug/Kg	250	58	50	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND	ug/Kg	250	34	50	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND	ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND	ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND	ug/Kg	250	42	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND	ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND	ug/Kg	250	46	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND	ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND	ug/Kg	510	120	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
Styrene	ND	ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND	ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND	ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND	ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND	ug/Kg	250	73	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND	ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND	ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND	ug/Kg	250	36	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND	ug/Kg	250	53	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND	ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND	ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND	ug/Kg	250	47	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND	ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND	ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND	ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND	ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND	ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND	ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	250	78	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND	ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Naphthalene	ND	ug/Kg	250	73	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND	ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
Surrogates			Limits						
Dibromofluoromethane	96%	%REC	70-145		50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	100%	%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Toluene-d8	98%	%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	101%	%REC	70-145		50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND	ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
Naphthalene	ND	ug/Kg	10	3.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND	ug/Kg	10	1.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Fluorene	ND	ug/Kg	10	1.3	1	338434	04/22/24	04/23/24	DJL
Phenanthrene	ND	ug/Kg	10	2.2	1	338434	04/22/24	04/23/24	DJL
Anthracene	2.3	J ug/Kg	10	1.4	1	338434	04/22/24	04/23/24	DJL

Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
ND		ug/Kg	10	3.4	1	338434	04/22/24	04/23/24	DJL
ND		ug/Kg	10	3.7	1	338434	04/22/24	04/23/24	DJL
1.2	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
2.4	J	ug/Kg	10	0.98	1	338434	04/22/24	04/23/24	DJL
4.2	J	ug/Kg	10	0.94	1	338434	04/22/24	04/23/24	DJL
1.2	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
2.1	J	ug/Kg	10	1.4	1	338434	04/22/24	04/23/24	DJL
2.9	J	ug/Kg	10	1.6	1	338434	04/22/24	04/23/24	DJL
ND		ug/Kg	10	2.9	1	338434	04/22/24	04/23/24	DJL
5.3	J	ug/Kg	10	1.7	1	338434	04/22/24	04/23/24	DJL
			Limits						
62%		%REC	27-125		1	338434	04/22/24	04/23/24	DJL
67%		%REC	30-120		1	338434	04/22/24	04/23/24	DJL
68%		%REC	33-155		1	338434	04/22/24	04/23/24	DJL
	ND ND 1.2 2.4 4.2 1.2 2.1 2.9 ND 5.3	ND ND 1.2 J 2.4 J 4.2 J 1.2 J 2.1 J 2.9 J ND 5.3 J	ND ug/Kg ND ug/Kg 1.2 J ug/Kg 2.4 J ug/Kg 4.2 J ug/Kg 1.2 J ug/Kg 2.1 J ug/Kg 2.9 J ug/Kg ND ug/Kg 5.3 J ug/Kg 62% %REC 67% %REC	ND ug/Kg 10 ND ug/Kg 10 1.2 J ug/Kg 10 2.4 J ug/Kg 10 4.2 J ug/Kg 10 1.2 J ug/Kg 10 1.2 J ug/Kg 10 2.1 J ug/Kg 10 2.9 J ug/Kg 10 ND ug/Kg 10 ND ug/Kg 10 5.3 J ug/Kg 10 Limits 62% %REC 27-125 67% %REC 30-120	ND ug/Kg 10 3.4 ND ug/Kg 10 3.7 1.2 J ug/Kg 10 1.1 2.4 J ug/Kg 10 0.98 4.2 J ug/Kg 10 0.94 1.2 J ug/Kg 10 1.1 2.1 J ug/Kg 10 1.4 2.9 J ug/Kg 10 1.4 2.9 J ug/Kg 10 1.6 ND ug/Kg 10 2.9 5.3 J ug/Kg 10 1.7 Limits 62% %REC 27-125 67% %REC 30-120	ND ug/Kg 10 3.4 1 ND ug/Kg 10 3.7 1 1.2 J ug/Kg 10 1.1 1 2.4 J ug/Kg 10 0.98 1 4.2 J ug/Kg 10 0.94 1 1.2 J ug/Kg 10 1.1 1 2.1 J ug/Kg 10 1.1 1 2.1 J ug/Kg 10 1.4 1 2.9 J ug/Kg 10 1.6 1 ND ug/Kg 10 2.9 1 5.3 J ug/Kg 10 1.7 1 Limits 62% %REC 27-125 1 67% %REC 30-120 1	ND ug/Kg 10 3.4 1 338434 ND ug/Kg 10 3.7 1 338434 1.2 J ug/Kg 10 1.1 1 338434 2.4 J ug/Kg 10 0.98 1 338434 4.2 J ug/Kg 10 0.94 1 338434 1.2 J ug/Kg 10 1.1 1 338434 2.1 J ug/Kg 10 1.1 1 338434 2.1 J ug/Kg 10 1.4 1 338434 2.9 J ug/Kg 10 1.6 1 338434 ND ug/Kg 10 2.9 1 338434 ND ug/Kg 10 2.9 1 338434 5.3 J ug/Kg 10 1.7 1 338434 Limits 62% %REC 27-125 1 338434 67% %REC 30-120 1 338434	ND ug/Kg 10 3.4 1 338434 04/22/24 ND ug/Kg 10 3.7 1 338434 04/22/24 1.2 J ug/Kg 10 1.1 1 338434 04/22/24 2.4 J ug/Kg 10 0.98 1 338434 04/22/24 4.2 J ug/Kg 10 0.94 1 338434 04/22/24 1.2 J ug/Kg 10 1.1 1 338434 04/22/24 1.2 J ug/Kg 10 1.1 1 338434 04/22/24 2.1 J ug/Kg 10 1.1 1 338434 04/22/24 2.1 J ug/Kg 10 1.4 1 338434 04/22/24 2.9 J ug/Kg 10 1.6 1 338434 04/22/24 ND ug/Kg 10 2.9 1 338434 04/22/24 5.3 J ug/Kg 10 1.7 1 338434 04/22/24 5.3 J ug/Kg 10 1.7 1 338434 04/22/24 Limits 62% %REC 27-125 1 338434 04/22/24 67% %REC 30-120 1 338434 04/22/24	ND ug/Kg 10 3.4 1 338434 04/22/24 04/23/24 ND ug/Kg 10 3.7 1 338434 04/22/24 04/23/24 1.2 J ug/Kg 10 1.1 1 338434 04/22/24 04/23/24 2.4 J ug/Kg 10 0.98 1 338434 04/22/24 04/23/24 4.2 J ug/Kg 10 0.94 1 338434 04/22/24 04/23/24 1.2 J ug/Kg 10 1.1 1 338434 04/22/24 04/23/24 1.2 J ug/Kg 10 1.1 1 338434 04/22/24 04/23/24 2.1 J ug/Kg 10 1.1 1 338434 04/22/24 04/23/24 2.1 J ug/Kg 10 1.4 1 338434 04/22/24 04/23/24 2.9 J ug/Kg 10 1.6 1 338434 04/22/24 04/23/24 ND ug/Kg 10 2.9 1 338434 04/22/24 04/23/24 5.3 J ug/Kg 10 1.7 1 338434 04/22/24 04/23/24 Limits 62% %REC 27-125 1 338434 04/22/24 04/23/24 67% %REC 30-120 1 338434 04/22/24 04/23/24

Sample ID: GRB 15 Lab ID: 506597-015 Collected: 04/17/24 12:55

Matrix: Soil Basis: Dry

506597-015 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	ND		%	1		1	338539	04/23/24	04/24/24	ARM
·	ואט		76	!		- 1	330339	04/23/24	04/24/24	AUM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	0.84	0.95	338460	04/22/24	04/23/24	SBW
Arsenic	1.0		mg/Kg	0.95	0.24	0.95	338460	04/22/24	04/23/24	SBW
Barium	45		mg/Kg	0.95	0.076	0.95	338460	04/22/24	04/23/24	SBW
Beryllium	0.088	J	mg/Kg	0.48	0.0060	0.95	338460	04/22/24	04/23/24	SBW
Cadmium	ND		mg/Kg	0.48	0.035	0.95	338460	04/22/24	04/23/24	SBW
Chromium	8.2		mg/Kg	0.95	0.22	0.95	338460	04/22/24	04/23/24	SBW
Cobalt	8.8		mg/Kg	0.48	0.21	0.95	338460	04/22/24	04/23/24	SBW
Copper	55		mg/Kg	0.95	0.13	0.95	338460	04/22/24	04/23/24	SBW
Lead	5.4		mg/Kg	0.95	0.25	0.95	338460	04/22/24	04/23/24	SBW
Molybdenum	0.34	J	mg/Kg	0.95	0.11	0.95	338460	04/22/24	04/23/24	SBW
Nickel	3.3		mg/Kg	0.95	0.11	0.95	338460	04/22/24	04/23/24	SBW
Selenium	1.3	J	mg/Kg	2.9	0.51	0.95	338460	04/22/24	04/23/24	SBW
Silver	ND		mg/Kg	0.48	0.059	0.95	338460	04/22/24	04/23/24	SBW
Thallium	ND		mg/Kg	2.9	0.32	0.95	338460	04/22/24	04/23/24	SBW
Vanadium	110		mg/Kg	0.95	0.049	0.95	338460	04/22/24	04/23/24	SBW
Zinc	33		mg/Kg	4.8	0.22	0.95	338460	04/22/24	04/23/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	0.077	J	mg/Kg	0.16	0.040	1.2	338476	04/23/24	04/23/24	KAM
Prep Method: EPA 3580M	ND			00		0.0	000000	04/05/04	0.4/05/0.4	LAMD
GRO C6-C12	ND		mg/Kg	39	4.4	3.9	338680	04/25/24	04/25/24	KMB
DRO C10-C28	ND		mg/Kg	39	14	3.9	338680	04/25/24	04/25/24	KMB
ORO C28-C44	ND		mg/Kg	79	14	3.9	338680	04/25/24	04/25/24	KMB
Surrogates	1000/		0/ DEC	Limits		2.0	000000	04/05/04	04/05/04	KMD
n-Triacontane Method: EPA 8081A Prep Method: EPA 3546	103%		%REC	70-130		3.9	338680	04/25/24	04/25/24	KMB
alpha-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
beta-BHC	ND		ug/Kg	5.1	1.4	1	338386	04/22/24	04/23/24	MES
gamma-BHC	ND		ug/Kg	5.1	1.0	1	338386	04/22/24	04/23/24	MES
delta-BHC	ND		ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Llantachlar	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Heptachlor			/1/	5.1	1.4	1	338386	04/22/24	04/23/24	MES
Aldrin	ND		ug/Kg	0				0.4/0.0/0.4		MES
Aldrin Heptachlor epoxide	ND		ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	
Aldrin Heptachlor epoxide Endosulfan I	ND ND			5.1 5.1	1.4	1	338386	04/22/24	04/23/24	MES
Aldrin Heptachlor epoxide	ND		ug/Kg	5.1				04/22/24 04/22/24	04/23/24 04/23/24	MES MES
Aldrin Heptachlor epoxide Endosulfan I	ND ND		ug/Kg ug/Kg	5.1 5.1	1.4		338386	04/22/24	04/23/24	MES
Aldrin Heptachlor epoxide Endosulfan I Dieldrin	ND ND ND		ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1	1.4 1.5	1	338386 338386	04/22/24 04/22/24	04/23/24 04/23/24	MES MES
Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1	1.4 1.5 1.5	1 1 1	338386 338386 338386	04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24	MES MES MES
Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.1 5.1 5.1 5.1 5.1	1.4 1.5 1.5 1.7	1 1 1	338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES

	, ,,	iaiyəiə i i		.0. 00		•			
506597-015 Analyte		ual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.1	1.2	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.1	1.5	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.1	1.7	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	10	2.3	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	100	31	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	51	9.2	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	54%	%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	40%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	51	11	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	51	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	51	16	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	51	23	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	51	13	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	51	15	1	338386	04/22/24	04/23/24	MES
Surrogates		-9/19	Limits						
Decachlorobiphenyl (PCB)	51%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B									
Freon 12	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	250	180	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	250	81	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	250	190	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	250	130	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	250	99	50	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	5,000	1,900	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	250	69	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	250	64	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	1,000		50	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	250	66	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	250	49	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	5,000	280	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	250	45	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	250	78	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	250	68	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	250	56	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	250	98	50	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	250	38	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg ug/Kg	250	40	50	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Kg ug/Kg	250	55	50	338582	04/24/24	04/24/24	TCN
שווטווטווטווטועום	שויו	ug/r\g	200	55	50	JJ050Z	U4/24/24	U4/24/24	I CIN

506597-015 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4-Methyl-2-Pentanone	ND	ug/Kg	250	85	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	250	44	50	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	250	51	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND	ug/Kg	250	33	50	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND	ug/Kg	250	43	50	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND	ug/Kg	250	37	50	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND	ug/Kg	250	41	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND	ug/Kg	250	31	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND	ug/Kg	250	46	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	250	57	50	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND	ug/Kg	250	54	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND	ug/Kg		120	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND	ug/Kg	250	52	50	338582	04/24/24	04/24/24	TCN
Styrene	ND	ug/Kg		47	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND	ug/Kg		43	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND	ug/Kg		42	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND	ug/Kg		54	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND	ug/Kg		72	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND	ug/Kg		40	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND	ug/Kg		45	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND	ug/Kg		36	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND	ug/Kg		52	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND	ug/Kg		41	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND	ug/Kg		33	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND	ug/Kg		47	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND	ug/Kg		37	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND	ug/Kg		37	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND	ug/Kg		38	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND	ug/Kg		42	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND	ug/Kg		58	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND	ug/Kg		44	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg		77	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND	ug/Kg		67	50	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND	ug/Kg		56	50	338582	04/24/24	04/24/24	TCN
Naphthalene	ND	ug/Kg		73	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND	ug/Kg		58	50	338582	04/24/24	04/24/24	TCN
Surrogates		29,119	Limits				0 1/2 1/2 1	0 1/2 1/2 1	
Dibromofluoromethane	98%	%REC			50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	100%	%REC			50	338582	04/24/24	04/24/24	TCN
Toluene-d8	98%	%REC			50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	100%	%REC			50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM		70.12	70 110				<u> </u>	0 1/2 1/2	
Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg		1.5	1	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND	ug/Kg		1.5	1	338434	04/22/24	04/23/24	DJL
Naphthalene	ND	ug/Kg		3.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND	ug/Kg		1.6	1	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND	ug/Kg		1.0	1	338434	04/22/24	04/23/24	DJL
Fluorene	ND	ug/Kg		1.2	1	338434	04/22/24	04/23/24	DJL
Phenanthrene	ND	ug/Kg		2.2	1	338434	04/22/24	04/23/24	DJL
Anthracene	ND	ug/Kg	10	1.4	1	338434	04/22/24	04/23/24	DJL

506597-015 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
							000404	0.4/0.0/0.4	0.4/00/04	
Fluoranthene	3.4	J	ug/Kg	10	3.4	1	338434	04/22/24	04/23/24	DJL
Pyrene	3.9	J	ug/Kg	10	3.6	1	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	1.4	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Chrysene	2.6	J	ug/Kg	10	0.96	1	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	4.6	J	ug/Kg	10	0.93	1	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	1.3	J	ug/Kg	10	1.1	1	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	2.3	J	ug/Kg	10	1.3	1	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	3.0	J	ug/Kg	10	1.5	1	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND		ug/Kg	10	2.8	1	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	6.1	J	ug/Kg	10	1.7	1	338434	04/22/24	04/23/24	DJL
Surrogates				Limits						
Nitrobenzene-d5	51%		%REC	27-125		1	338434	04/22/24	04/23/24	DJL
2-Fluorobiphenyl	52%		%REC	30-120		1	338434	04/22/24	04/23/24	DJL
Terphenyl-d14	68%		%REC	33-155		1	338434	04/22/24	04/23/24	DJL

Sample ID: 0	RB 16		L	ab ID:	50659	7-016		Collected: 04/17/24 12:59					
506597-016 Analyte	Result	Qual	Units	RL	MDL	Basis	Matrix	DF	Batch	Prepared	Analyzed	Chemist	
Method: ASTM D2216 Prep Method: METHOD													
Moisture, Percent	ND		%	1			Soil	1	338539	04/23/24	04/24/24	ARM	
Method: EPA 6010B Prep Method: EPA 3050B													
Antimony	ND		mg/Kg	3.0	0.89	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Arsenic	1.7		mg/Kg	1.0	0.26	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Barium	71		mg/Kg	1.0	0.080	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Beryllium	0.061	J	mg/Kg	0.51	0.0063	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Cadmium	0.68	- 0	mg/Kg	0.51	0.0003	Dry	Soil	<u>.</u> 1	338460	04/22/24	04/23/24	SBW	
Chromium	61			1.0	0.037		Soil	<u>'</u>	338460	04/22/24	04/23/24	SBW	
			mg/Kg			Dry							
Cobalt	12		mg/Kg	0.51	0.22	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Copper	140		mg/Kg	1.0	0.14	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Lead	33		mg/Kg	1.0	0.26	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Molybdenum	0.52	J	mg/Kg	1.0	0.12	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Nickel	30		mg/Kg	1.0	0.12	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Selenium	1.3	J	mg/Kg	3.0	0.55	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Silver	ND		mg/Kg	0.51	0.062	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Thallium	ND		mg/Kg	3.0	0.34	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Vanadium	96		mg/Kg	1.0	0.052	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Zinc	55		mg/Kg	5.1	0.24	Dry	Soil	1	338460	04/22/24	04/23/24	SBW	
Method: EPA 6010B Prep Method: METHOD													
Chromium	0.15	J	mg/L	0.30	0.0073		WET Leachate	10	339001	04/29/24	04/29/24	SBW	
	0.10		mg/L	0.00	0.0070		WET Ecachate	- 10	000001	04/25/24	04/20/24	OBW	
Method: EPA 7471A Prep Method: METHOD													
Mercury	0.071	J	mg/Kg	0.16	0.041	Dry	Soil	1.2	338476	04/23/24	04/23/24	KAM	
Method: EPA 8015M Prep Method: EPA 3580M													
GRO C6-C12	ND		mg/Kg	10		Dry	Soil	1	338396	04/22/24	04/24/24	KMB	
DRO C10-C28	12		mg/Kg	10	3.5	Dry	Soil	1	338396	04/22/24	04/24/24	KMB	
ORO C28-C44	13	J	mg/Kg	20	3.5	Dry	Soil	1	338396	04/22/24	04/24/24	KMB	
Surrogates			- 0 0	Limits									
n-Triacontane	107%		%REC	70-130		Dry	Soil	1	338396	04/22/24	04/24/24	KMB	
Method: EPA 8081A	107 70		701120	70 100		2.9		<u> </u>	000000	0 1/22/2 1	0 1/2 1/2 1	TUIL	
Prep Method: EPA 3546	ND		/1/	F 1	1.0	D.m./	Cail		000000	04/00/04	04/23/24	MEC	
alpha-BHC	ND		ug/Kg	5.1	1.0	Dry	Soil	1	338386	04/22/24		MES	
beta-BHC	ND		ug/Kg	5.1	1.4	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
gamma-BHC	ND		ug/Kg	5.1	1.0	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
delta-BHC	ND		ug/Kg	5.1	1.2	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Heptachlor	2.9	J	ug/Kg	5.1	1.7	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Aldrin	ND		ug/Kg	5.1	1.4	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Heptachlor epoxide	ND		ug/Kg	5.1	1.7	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Endosulfan I	ND		ug/Kg	5.1	1.4	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Dieldrin	ND		ug/Kg	5.1	1.6	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
4,4'-DDE	ND		ug/Kg	5.1	1.5	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Endrin	ND		ug/Kg	5.1	1.7	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Endosulfan II	ND		ug/Kg	5.1	1.7	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Endosulfan sulfate	ND		ug/Kg	5.1	2.1	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
4,4'-DDD	ND			5.1	0.95	Dry	Soil	<u>'</u> 1	338386	04/22/24	04/23/24	MES	
<u> </u>			ug/Kg			•							
Endrin aldehyde	ND		ug/Kg	5.1	1.2	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Endrin ketone	ND		ug/Kg	5.1	1.5	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
4,4'-DDT	ND		ug/Kg	5.1	1.8	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Methoxychlor	ND		ug/Kg	10	2.3	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
Toxaphene	ND		ug/Kg	100	. 32	Dry	Soil	1	338386	04/22/24	04/23/24	MES	
4.67	Dag	ulta fai		haantra		1	ro not included	41-1					

Results for any subcontracted analyses are not included in this section.

506597-016 Analyte	Result	Qual Units	RL	MDL	Basis	Matrix	DF	Batch	Prepared	Analyzed	Chemist
	400	07		0.0	_	0."		200000	0.4/00/0.4	0.4/00/04	MEO
Chlordane (Technical)	490	ug/Kg	51	9.3	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Surrogates	010/	0/ DE0	Limits		D	0-11		000000	0.4/00/04	0.4/00/04	MEO
TCMX	61%	%REC	23-120		Dry	Soil	1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	47%	%REC	24-120		Dry	Soil	1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546											
Aroclor-1016	ND	ug/Kg	51	13	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	51	11	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	51	11	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	51	16	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	51	17	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	51	16	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	51	23	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	51	13	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	51	15	Dry	Soil	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits								
Decachlorobiphenyl (PCB)	60%	%REC	19-121		Dry	Soil	1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B											
Freon 12	ND	ug/Kg	250	130	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	250	190	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	250	81	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	250	190	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	250	130	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	250	100	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	5,100	1,900	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	250	69	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	250	65	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	1,000		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	250	66	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	250	50	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	250	52	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	5,100	280	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	250	45	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	250	79	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	250	69	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	250	58	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	250	69	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	250	57	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	250	99	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	250	33	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	250	38	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	250	31	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	250	40	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Kg	250	56	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
4-Methyl-2-Pentanone	ND	ug/Kg	250	86	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	250	45	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	250	52	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene	ND	ug/Kg	250	58	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1,2-Trichloroethane	ND	ug/Kg	250	34	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,3-Dichloropropane	ND	ug/Kg	250	44	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Tetrachloroethene	ND	ug/Kg	250	37	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Dibromochloromethane	ND	ug/Kg	250	42	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromoethane	ND	ug/Kg	250	31	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND	ug/Kg	250	46	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	250	57	Dry	Soil	50	338582	04/24/24	04/24/24	TCN

			Alla	ıysıs	1103	uito it)i 3003.	<i>J I</i>				
506597-016 Analyte	Result	Qual	Units	RL	MDL	Basis	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Ethylbenzene	ND		ug/Kg	250	55	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	510	120	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	250	52	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	250	47	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	250	44	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	250	43	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	55	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	250	73	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	250	41	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	250	45	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	250	53	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	250	41	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	250	33	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	250	38	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	250	37	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	250	38	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	250	43	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg ug/Kg	250	59	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND			250	44		Soil	50	338582	04/24/24	04/24/24	TCN
	ND		ug/Kg	250		Dry						TCN
1,2-Dibromo-3-Chloropropane			ug/Kg		78	Dry	Soil	50	338582	04/24/24	04/24/24	
1,2,4-Trichlorobenzene	ND		ug/Kg	250	68	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg	250	57	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	250	73	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	250	59	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Surrogates				Limits								
Dibromofluoromethane	95%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	97%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Toluene-d8	99%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	100%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546												
1-Methylnaphthalene	ND		ug/Kg	10	1.5	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND		ug/Kg	10	1.5	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Naphthalene	ND		ug/Kg	10	3.6	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND		ug/Kg	10	1.6	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	10	1.1	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	10	1.3	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Phenanthrene	5.5	J	ug/Kg	10	2.2	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Anthracene	3.3	J	ug/Kg	10	1.4	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Fluoranthene	11		ug/Kg	10	3.4	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Pyrene	11		ug/Kg	10	3.7	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	4.2	J	ug/Kg	10	1.1	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Chrysene	12	<u> </u>	ug/Kg	10	0.97	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
,	23			10	0.97			1	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene Benzo(k)fluoranthene	6.7		ug/Kg	10		Dry	Soil Soil		338434	04/22/24	04/23/24	DJL
		J	ug/Kg		1.1	Dry		1				
Benzo(a)pyrene	6.7	J	ug/Kg	10	1.4	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	11		ug/Kg	10	1.6	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND		ug/Kg	10	2.8	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Benzo(g,h,i)perylene	14		ug/Kg	10	1.7	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Surrogates				Limits								
				07.405		D	• "	4	338434	04/22/24	04/23/24	DJL
Nitrobenzene-d5	64%		%REC	27-125		Dry	Soil	1				
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	64% 66% 79%		%REC %REC %REC	30-120 33-155		Dry Dry	Soil Soil	1	338434 338434	04/22/24	04/23/24 04/23/24	DJL DJL

Sample ID: GRB 17 Lab ID: 506597-017 Collected: 04/17/24 13:03 Result Qual Units 506597-017 Analyte RI **MDL** Basis Matrix DF Batch Prepared Analyzed Chemist Method: ASTM D2216 Prep Method: METHOD Moisture, Percent ND % 1 Soil 338539 04/23/24 04/24/24 ARM Method: EPA 6010B Prep Method: EPA 3050B ND mg/Kg 3.0 0.89 Dry Soil 338460 04/22/24 04/23/24 SBW mg/Kg 2.0 1.0 0.26 Dry Soil 338460 04/22/24 04/23/24 SBW Arsenic 36 0.080 Dry 338460 04/22/24 04/23/24 SBW mg/Kg 1.0 Soil Barium 0.0063 338460 04/22/24 04/23/24 SBW Beryllium 0.054 mg/Kg 0.51 Dry Soil Dry Cadmium 0.34 mg/Kg 0.51 0.037 Soil 338460 04/22/24 04/23/24 SBW mg/Kg Chromium 12 1.0 0.23 Dry Soil 338460 04/22/24 04/23/24 SBW 1 Dry SBW 9.8 mg/Kg 0.51 0.22 Soil 338460 04/22/24 04/23/24 Cobalt 1 SBW Copper 70 mg/Kg 1.0 0.14 Dry Soil 1 338460 04/22/24 04/23/24 53 mg/Kg 1.0 0.26 Dry Soil 338460 04/22/24 04/23/24 SBW Lead Molybdenum 0.39 mg/Kg 1.0 0.12 Dry Soil 338460 04/22/24 04/23/24 SBW 1 Nickel 8.9 1.0 0.12 Dry Soil 338460 04/22/24 04/23/24 SBW mg/Kg 1 Selenium 0.78 mg/Kg 3.0 0.55 Dry Soil 338460 04/22/24 04/23/24 SBW ND 0.062 Soil 338460 04/22/24 04/23/24 SBW Silver mg/Kg 0.51 Dry 1 mg/Kg Thallium ND 3.0 0.34 Dry Soil 338460 04/22/24 04/23/24 SBW 1 74 SBW Vanadium mg/Kg 1.0 0.052 Dry Soil 1 338460 04/22/24 04/23/24 Dry 7inc 1,000 mg/Kg 5.1 0.24 Soil 338460 04/22/24 04/23/24 SBW Method: EPA 6010B Prep Method: METHOD Lead 0.98 0.15 0.044 WET Leachate 339001 04/29/24 04/29/24 SBW mg/L 10 Method: EPA 7470A Prep Method: METHOD Mercury 0.035 0.10 0.020 WET Leachate 100 338977 04/29/24 04/29/24 KAM mg/L Method: EPA 7471A Prep Method: METHOD Mercury 3.3 mg/Kg 0.76 0.19 Dry Soil 5.4 338476 04/23/24 04/23/24 KAM Method: EPA 8015M Prep Method: EPA 3580M GRO C6-C12 ND mg/Kg 10 Dry Soil 0.99 338396 04/22/24 04/24/24 KMB DRO C10-C28 110 10 0.99 338396 04/22/24 04/24/24 **KMB** mg/Kg 3.5 Dry Soil ORO C28-C44 96 20 Soil 0.99 338396 04/22/24 04/24/24 **KMB** mg/Kg 3.5 Dry Surrogates Limits n-Triacontane 93% %REC 70-130 Dry Soil 0.99 338396 04/22/24 04/24/24 KMB Method: FPA 8081A Prep Method: EPA 3546 alpha-BHC ND ug/Kg 5.0 0.98 Dry Soil 0.98 338386 04/22/24 04/23/24 MES ND 338386 04/22/24 beta-BHC ug/Kg 5.0 1.4 Soil 0.98 04/23/24 MES Dry gamma-BHC ND ug/Kg 5.0 1.0 Dry Soil 0.98 338386 04/22/24 04/23/24 MES delta-BHC ND 5.0 Soil 0.98 338386 04/22/24 04/23/24 MES ug/Kg 1.2 Dry Heptachlor ND 5.0 1.7 Dry Soil 0.98 338386 04/22/24 04/23/24 MES ug/Kg 04/23/24 ND 1.3 Dry 0.98 338386 04/22/24 MES Aldrin 5.0 Soil ug/Kg Heptachlor epoxide ND ug/Kg 5.0 1.7 Dry Soil 0.98 338386 04/22/24 04/23/24 MES ND 5.0 Soil 0.98 338386 04/22/24 04/23/24 MES Endosulfan I ug/Kg 1.4 Dry Dieldrin ND 5.0 Dry 0.98 338386 04/22/24 04/23/24 MES ug/Kg 1.5 Soil 4.4'-DDE 338386 04/22/24 04/23/24 MES ND ug/Kg 5.0 1.4 Drv Soil 0.98 Endrin ND ug/Kg 5.0 1.6 Dry Soil 0.98 338386 04/22/24 04/23/24 MES MES Endosulfan II ND ug/Kg 5.0 1.6 Dry Soil 0.98 338386 04/22/24 04/23/24 Endosulfan sulfate ND 5.0 2.0 0.98 338386 04/22/24 04/23/24 MES ug/Kg Dry Soil 4,4'-DDD ND 0.92 0.98 MES ug/Kg 5.0 Dry Soil 338386 04/22/24 04/23/24 Endrin aldehyde ND ug/Kg 5.0 1.2 Dry Soil 0.98 338386 04/22/24 04/23/24 MES

Endrin ketone 4,4'-DDT Methoxychlor	Result ND	Qual Units	RL	MDL	Racie	Maduise	DE	Dotob	Droporod	Analyzad	.
4,4'-DDT	ND				Dasis	Matrix	DF	Batch	Prepared	Analyzed	Chemist
		ug/Kg	5.0	1.5	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	5.0	1.7	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Motifoxyonioi	ND	ug/Kg	9.9	2.3	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	99	31	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	50	9.0	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Surrogates			Limits								
TCMX	70%	%REC	23-120		Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	57%	%REC	24-120		Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546											
Aroclor-1016	ND	ug/Kg	50	13	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	50	11	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	50	11	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	50	16	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	50	17	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	50	15	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1260	64	ug/Kg	50	23	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	50	13	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	50	14	Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Surrogates			Limits								
Decachlorobiphenyl (PCB)	71%	%REC	19-121		Dry	Soil	0.98	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5030B											
Freon 12	ND	ug/Kg	250	130	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chloromethane	ND	ug/Kg	250	190	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Vinyl Chloride	ND	ug/Kg	250	81	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromomethane	ND	ug/Kg	250	190	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chloroethane	ND	ug/Kg	250	130	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Trichlorofluoromethane	ND	ug/Kg	250	100	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Acetone	ND	ug/Kg	5,100	1,900	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Freon 113	ND	ug/Kg	250	69	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethene	ND	ug/Kg	250	65	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Methylene Chloride	ND	ug/Kg	1,000		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
MTBE	ND	ug/Kg	250	66	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
trans-1,2-Dichloroethene	ND	ug/Kg	250	50	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloroethane	ND	ug/Kg	250	52	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
2-Butanone	ND	ug/Kg	5,100	280	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
2,2-Dichloropropane	ND	ug/Kg	250	45	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chloroform	ND	ug/Kg	250	79	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromochloromethane	ND	ug/Kg	250	69	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1,1-Trichloroethane	ND	ug/Kg	250	58	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1-Dichloropropene	ND	ug/Kg	250	69	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Carbon Tetrachloride	ND	ug/Kg	250	57	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane	ND	ug/Kg	250	99	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Benzene	ND	ug/Kg	250	33	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Trichloroethene	ND	ug/Kg	250	38	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloropropane	ND	ug/Kg	250	31	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromodichloromethane	ND	ug/Kg	250	40	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Dibromomethane	ND	ug/Kg	250	56	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
4-Methyl-2-Pentanone	ND	ug/Kg	250	86	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
cis-1,3-Dichloropropene	ND	ug/Kg	250	45	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Toluene	ND	ug/Kg	250	52	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
	ND	ug/Kg	250	58	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene			050		D	0-11	ΕO	220500	04/04/04		TON
	ND	ug/Kg	250	34	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene		ug/Kg ug/Kg	250	44	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND										

			, ,,,,	, 0.0		, aito		•				
506597-017 Analyte	Result	Qual	Units	RL	MDL	Basis	Matrix	DF	Batch	Prepared	Analyzed	Chemist
1,2-Dibromoethane	ND		ug/Kg	250	31	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Chlorobenzene	ND		ug/Kg	250	46	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	250	57	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Ethylbenzene	ND		ug/Kg	250	55	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
m,p-Xylenes	ND		ug/Kg	510	120	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
o-Xylene	ND		ug/Kg	250	52	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Styrene	ND		ug/Kg	250	47	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromoform	ND		ug/Kg	250	44	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Isopropylbenzene	ND		ug/Kg	250	43	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	55	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichloropropane	ND		ug/Kg	250	73	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Propylbenzene	ND		ug/Kg	250	41	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromobenzene	ND		ug/Kg	250	45	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
2-Chlorotoluene	ND		ug/Kg	250	53	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
4-Chlorotoluene	ND		ug/Kg	250	41	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
tert-Butylbenzene	ND		ug/Kg	250	33	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
sec-Butylbenzene	ND		ug/Kg	250	38	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
para-Isopropyl Toluene	ND		ug/Kg	250	37	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,3-Dichlorobenzene	ND		ug/Kg	250	38	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,4-Dichlorobenzene	ND		ug/Kg	250	43	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
n-Butylbenzene	ND		ug/Kg	250	59	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichlorobenzene	ND		ug/Kg	250	44	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	250	78	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2,4-Trichlorobenzene	ND		ug/Kg	250	68	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Hexachlorobutadiene	ND		ug/Kg	250	57	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Naphthalene	ND		ug/Kg	250	73	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2,3-Trichlorobenzene	ND		ug/Kg	250	59	Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Surrogates				Limits								
Dibromofluoromethane	95%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
1,2-Dichloroethane-d4	99%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Toluene-d8	100%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Bromofluorobenzene	98%		%REC	70-145		Dry	Soil	50	338582	04/24/24	04/24/24	TCN
Method: EPA 8270C-SIM Prep Method: EPA 3546												
1-Methylnaphthalene	ND		ug/Kg	10	1.5	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
2-Methylnaphthalene	ND		ug/Kg	10	1.5	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Naphthalene	ND		ug/Kg	10	3.6	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Acenaphthylene	ND		ug/Kg	10	1.6	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Acenaphthene	ND		ug/Kg	10	1.1	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Fluorene	ND		ug/Kg	10	1.3	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Phenanthrene	4.6	J	ug/Kg	10	2.2	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Anthracene	1.7	J	ug/Kg	10	1.4	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Fluoranthene	6.9	J	ug/Kg	10	3.4	Dry	Soil	<u> </u>	338434	04/22/24	04/23/24	DJL
Pyrene	6.5	J	ug/Kg	10	3.7	Dry	Soil	<u> </u>	338434	04/22/24	04/23/24	DJL
Benzo(a)anthracene	1.9	J	ug/Kg	10	1.1	Dry	Soil	<u> </u>	338434	04/22/24	04/23/24	DJL
Chrysene	4.3	J	ug/Kg	10	0.97	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Benzo(b)fluoranthene	7.9	J	ug/Kg ug/Kg	10	0.94	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Benzo(k)fluoranthene	2.3	J	ug/Kg ug/Kg	10	1.1	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Benzo(a)pyrene	2.6	J	ug/Kg ug/Kg	10	1.1	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Indeno(1,2,3-cd)pyrene	5.3	J	ug/Kg ug/Kg	10	1.4	Dry	Soil	1	338434	04/22/24	04/23/24	DJL
Dibenz(a,h)anthracene	ND	J		10	2.8	Dry	Soil	- 1	338434	04/22/24	04/23/24	DJL
,		1	ug/Kg		1.7			1	338434			
Benzo(g,h,i)perylene	9.5	J	ug/Kg	10	1./	Dry	Soil	1	ააგ434	04/22/24	04/23/24	DJL
Surrogates	F40/		0/ DEC	Limits		D	Call		000404	04/00/04	04/00/04	D."
Nitrobenzene-d5 2-Fluorobiphenyl	51%		%REC	27-125		Dry	Soil	1	338434	04/22/24	04/23/24	DJL
2 Elucrobinhonyl			0/ DEC	00 100			0 "					
Terphenyl-d14	55% 73%		%REC	30-120 33-155		Dry Dry	Soil Soil	1	338434 338434	04/22/24	04/23/24	DJL DJL

DO Diluted Out

J Estimated value

ND Not Detected

Type: Sample Duplicate Lab ID: QC1147141 Batch: 338539

Matrix (Source ID): Soil (506597-012) Method: ASTM D2216 Prep Method: METHOD

Source

		Sample				KPD		
QC1147141 Analyte	Result	Result	Units	Qual	RPD	Lim	Basis	DF
Moisture, Percent	3.775	4.026	%		6	20		1

Type: Blank Lab ID: QC1148786 Batch: 339001

Matrix: WET Leachate Method: EPA 6010B Prep Method: METHOD

QC1148786 Analyte	Result Qual	Units	RL	MDL	Prepared	Analyzed
Chromium	ND	mg/L	0.30	0.0073	04/29/24	04/29/24
Lead	ND	mg/L	0.15	0.044	04/29/24	04/29/24

Type: Lab Control Sample Lab ID: QC1148787 Batch: 339001

Matrix: WET Leachate Method: EPA 6010B Prep Method: METHOD

QC1148787 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Chromium	3.985	4.000	mg/L	100%		80-120
Lead	4.343	4.000	mg/L	109%		80-120

Type: Lab Control Sample Duplicate Lab ID: QC1148788 Batch: 339001

Matrix: WET Leachate Method: EPA 6010B Prep Method: METHOD

QC1148788 Analyte	Result	Spiked	Units	Recovery Qu	al Limits	RPD	RPD Lim
Chromium	3.922	4.000	mg/L	98%	80-120	2	20
Lead	4.330	4.000	mg/L	108%	80-120	0	20

Type: Blank Lab ID: QC1146869 Batch: 338460

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1146869 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	0.88	04/22/24	04/23/24
Arsenic	ND		mg/Kg	1.0	0.25	04/22/24	04/23/24
Barium	ND		mg/Kg	1.0	0.080	04/22/24	04/23/24
Beryllium	ND		mg/Kg	0.50	0.0063	04/22/24	04/23/24
Cadmium	ND		mg/Kg	0.50	0.036	04/22/24	04/23/24
Chromium	ND		mg/Kg	1.0	0.23	04/22/24	04/23/24
Cobalt	ND		mg/Kg	0.50	0.22	04/22/24	04/23/24
Copper	0.17	J	mg/Kg	1.0	0.14	04/22/24	04/23/24
Lead	ND		mg/Kg	1.0	0.26	04/22/24	04/23/24
Molybdenum	ND		mg/Kg	1.0	0.11	04/22/24	04/23/24
Nickel	ND		mg/Kg	1.0	0.12	04/22/24	04/23/24
Selenium	ND		mg/Kg	3.0	0.54	04/22/24	04/23/24
Silver	ND		mg/Kg	0.50	0.062	04/22/24	04/23/24
Thallium	ND		mg/Kg	3.0	0.34	04/22/24	04/23/24
Vanadium	ND		mg/Kg	1.0	0.051	04/22/24	04/23/24
Zinc	ND		mg/Kg	5.0	0.23	04/22/24	04/23/24

Type: Lab Control Sample Lab ID: QC1146870 Batch: 338460
Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1146870 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	97.55	100.0	mg/Kg	98%	80-120
Arsenic	98.10	100.0	mg/Kg	98%	80-120
Barium	99.33	100.0	mg/Kg	99%	80-120
Beryllium	99.49	100.0	mg/Kg	99%	80-120
Cadmium	98.56	100.0	mg/Kg	99%	80-120
Chromium	99.23	100.0	mg/Kg	99%	80-120
Cobalt	106.0	100.0	mg/Kg	106%	80-120
Copper	98.67	100.0	mg/Kg	99%	80-120
Lead	103.8	100.0	mg/Kg	104%	80-120
Molybdenum	98.56	100.0	mg/Kg	99%	80-120
Nickel	103.4	100.0	mg/Kg	103%	80-120
Selenium	92.52	100.0	mg/Kg	93%	80-120
Silver	47.27	50.00	mg/Kg	95%	80-120
Thallium	103.6	100.0	mg/Kg	104%	80-120
Vanadium	99.06	100.0	mg/Kg	99%	80-120
Zinc	96.55	100.0	mg/Kg	97%	80-120

Type: Matrix Spike Lab ID: QC1146871 Batch: 338460

Matrix (Source ID): Soil (506597-001) Method: EPA 6010B Prep Method: EPA 3050B

Basis: Dry

		Source Sample						
QC1146871 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	17.93	ND	96.15	mg/Kg	19%	*	75-125	0.96
Arsenic	99.73	0.4191	96.15	mg/Kg	103%		75-125	0.96
Barium	163.7	65.66	96.15	mg/Kg	102%		75-125	0.96
Beryllium	99.89	0.09125	96.15	mg/Kg	104%		75-125	0.96
Cadmium	93.13	ND	96.15	mg/Kg	97%		75-125	0.96
Chromium	102.3	5.832	96.15	mg/Kg	100%		75-125	0.96
Cobalt	110.5	10.35	96.15	mg/Kg	104%		75-125	0.96
Copper	202.6	101.2	96.15	mg/Kg	105%		75-125	0.96
Lead	104.9	7.225	96.15	mg/Kg	102%		75-125	0.96
Molybdenum	92.86	0.4317	96.15	mg/Kg	96%		75-125	0.96
Nickel	98.95	2.891	96.15	mg/Kg	100%		75-125	0.96
Selenium	93.31	1.544	96.15	mg/Kg	95%		75-125	0.96
Silver	50.25	ND	48.08	mg/Kg	105%		75-125	0.96
Thallium	95.36	ND	96.15	mg/Kg	99%		75-125	0.96
Vanadium	225.3	117.8	96.15	mg/Kg	112%		75-125	0.96
Zinc	120.8	28.99	96.15	mg/Kg	95%		75-125	0.96

Type: Matrix Spike Duplicate Lab ID: QC1146872 Batch: 338460

Matrix (Source ID): Soil (506597-001) Method: EPA 6010B Prep Method: EPA 3050B

Basis: Dry

		Source Sample							RPD	
QC1146872 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	19.26	ND	96.15	mg/Kg	20%	*	75-125	7	41	0.96
Arsenic	97.34	0.4191	96.15	mg/Kg	101%		75-125	2	35	0.96
Barium	159.7	65.66	96.15	mg/Kg	98%		75-125	2	20	0.96
Beryllium	97.95	0.09125	96.15	mg/Kg	102%		75-125	2	20	0.96
Cadmium	91.21	ND	96.15	mg/Kg	95%		75-125	2	20	0.96
Chromium	99.97	5.832	96.15	mg/Kg	98%		75-125	2	20	0.96
Cobalt	108.4	10.35	96.15	mg/Kg	102%		75-125	2	20	0.96
Copper	199.9	101.2	96.15	mg/Kg	103%		75-125	1	20	0.96
Lead	102.8	7.225	96.15	mg/Kg	99%		75-125	2	20	0.96
Molybdenum	91.47	0.4317	96.15	mg/Kg	95%		75-125	2	20	0.96
Nickel	96.76	2.891	96.15	mg/Kg	98%		75-125	2	20	0.96
Selenium	91.20	1.544	96.15	mg/Kg	93%		75-125	2	20	0.96
Silver	48.91	ND	48.08	mg/Kg	102%		75-125	3	20	0.96
Thallium	93.49	ND	96.15	mg/Kg	97%		75-125	2	20	0.96
Vanadium	217.7	117.8	96.15	mg/Kg	104%		75-125	3	20	0.96
Zinc	118.7	28.99	96.15	mg/Kg	93%		75-125	2	20	0.96

Type: Post Digest Spike Lab ID: QC1146873 Batch: 338460

Matrix (Source ID): Soil (506597-001) Method: EPA 6010B Prep Method: EPA 3050B

Basis: Dry

		Source Sample						
QC1146873 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	93.17	ND	97.09	mg/Kg	96%		75-125	0.97
Arsenic	95.93	0.4191	97.09	mg/Kg	98%		75-125	0.97
Barium	157.4	65.66	97.09	mg/Kg	95%		75-125	0.97
Beryllium	95.71	0.09125	97.09	mg/Kg	98%		75-125	0.97
Cadmium	89.73	ND	97.09	mg/Kg	92%		75-125	0.97
Chromium	98.04	5.832	97.09	mg/Kg	95%		75-125	0.97
Cobalt	105.9	10.35	97.09	mg/Kg	98%		75-125	0.97
Copper	201.4	101.2	97.09	mg/Kg	103%		75-125	0.97
Lead	101.1	7.225	97.09	mg/Kg	97%		75-125	0.97
Molybdenum	96.17	0.4317	97.09	mg/Kg	99%		75-125	0.97
Nickel	95.10	2.891	97.09	mg/Kg	95%		75-125	0.97
Selenium	90.66	1.544	97.09	mg/Kg	92%		75-125	0.97
Silver	47.91	ND	48.54	mg/Kg	99%		75-125	0.97
Thallium	92.65	ND	97.09	mg/Kg	95%		75-125	0.97
Vanadium	211.4	117.8	97.09	mg/Kg	96%		75-125	0.97
Zinc	115.7	28.99	97.09	mg/Kg	89%		75-125	0.97

Mercury

Batch QC

Type: Blank Lab ID: QC1148722 Batch: 338977 Matrix: WET Leachate Method: EPA 7470A Prep Method: METHOD

QC1148722 Analyte Qual **Units** RL MDL Result **Prepared Analyzed** ND 0.10 0.020 04/29/24 04/29/24

mg/L

Type: Blank Lab ID: QC1148726 Batch: 338977 Matrix: WET Leachate Method: EPA 7470A Prep Method: METHOD

QC1148726 Analyte RL MDL Result Qual Units **Prepared** Analyzed ND 0.10 0.020 04/29/24 04/29/24 Mercury mg/L

Type: Lab Control Sample Lab ID: QC1148727 Batch: 338977 Matrix: WET Leachate Method: EPA 7470A Prep Method: METHOD

QC1148727 Analyte Result **Spiked** Units Recovery Qual Limits 102% 0.5110 0.5000 80-120 Mercury mg/L

Type: Matrix Spike Lab ID: QC1148728 Batch: 338977 Matrix (Source ID): WET Leachate (506597-017) Method: EPA 7470A Prep Method: METHOD

> Source Sample

QC1148728 Analyte Result Units Qual Limits DF Result **Spiked** Recovery 101% 0.5000 75-125 Mercury 0.5425 0.03507 mg/L 100

Type: Matrix Spike Duplicate Lab ID: QC1148729 Batch: 338977 Matrix (Source ID): WET Leachate (506597-017) Method: EPA 7470A Prep Method: METHOD

Source

Sample **RPD** QC1148729 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF Mercury 0.5403 0.03507 0.5000 101% 75-125 mg/L 100

Type: Blank Lab ID: QC1146941 Batch: 338476 Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1146941 Analyte Result Qual **Units** RL MDL **Prepared Analyzed** 04/23/24 04/23/24 Mercury ND 0.14 0.035 mg/Kg

Type: Lab Control Sample Lab ID: QC1146942 Batch: 338476 Method: EPA 7471A Matrix: Soil Prep Method: METHOD

QC1146942 Analyte Result Spiked Units Recovery Qual Limits 0.8801 0.8333 106% 80-120 Mercury mg/Kg

Type: Matrix Spike
Matrix (Source ID): Soil (506597-001)

Lab ID: QC1146943 Method: EPA 7471A Batch: 338476
Prep Method: METHOD

Basis: Dry

Source

		Sample						
QC1146943 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Mercury	1.039	0.05675	0.8929	mg/Kg	110%		75-125	1.1

Type: Matrix Spike Duplicate Lab ID: QC1146944

Matrix (Source ID): Soil (506597-001) Method: EPA 7471A

Batch: 338476
Prep Method: METHOD

Basis: Dry

Source

RPD Sample **RPD** QC1146944 Analyte Result **Spiked** Units Recovery Qual Limits DF Result Lim 1.018 0.05675 108% 75-125 20 Mercury 0.8929 mg/Kg 1.1

Type: Blank Lab ID: QC1146767 Batch: 338396

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1146767 Analyte	Result C	Qual Units	RL	MDL	Prepared	Analyzed
GRO C6-C12	ND	mg/Kg	9.9		04/22/24	04/23/24
DRO C10-C28	ND	mg/Kg	9.9	3.4	04/22/24	04/23/24
ORO C28-C44	ND	mg/Kg	20	3.4	04/22/24	04/23/24
Surrogates			Limits			
n-Triacontane	98%	%REC	70-130		04/22/24	04/23/24

Type: Lab Control Sample Lab ID: QC1146768 Batch: 338396

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1146768 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	209.6	249.1	mg/Kg	84%	76-122
Surrogates					
n-Triacontane	9.686	9.965	mg/Kg	97%	70-130

Type: Matrix Spike Lab ID: QC1146769 Batch: 338396

Matrix (Source ID): Soil (506597-001) Method: EPA 8015M Prep Method: EPA 3580M

Basis: Dry

Source

		Sample						
QC1146769 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	214.2	ND	248.3	mg/Kg	86%		62-126	0.99
Surrogates								
n-Triacontane	10.33		9.930	mg/Kg	104%		70-130	0.99

Type: Matrix Spike Duplicate Lab ID: QC1146770 Batch: 338396

Matrix (Source ID): Soil (506597-001) Method: EPA 8015M Prep Method: EPA 3580M

Basis: Dry

Source Sample **RPD** QC1146770 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF Diesel C10-C28 215.1 62-126 35 ND 248.9 mg/Kg 86% 0 1 Surrogates n-Triacontane 10.36 104% 9.955 mg/Kg 70-130

Type: Blank Lab ID: QC1147640 Batch: 338680

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1147640 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
GRO C6-C12	ND		mg/Kg	10		04/24/24	04/24/24
DRO C10-C28	ND		mg/Kg	10	3.5	04/24/24	04/24/24
ORO C28-C44	ND		mg/Kg	20	3.5	04/24/24	04/24/24
Surrogates				Limits			
n-Triacontane	108%		%REC	70-130		04/24/24	04/24/24

Type: Lab Control Sample Lab ID: QC1147641 Batch: 338680

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1147641 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	222.0	250.0	mg/Kg	89%	76-122
Surrogates					
n-Triacontane	7.913	10.00	mg/Kg	79%	70-130

Type: Matrix Spike Lab ID: QC1147642 Batch: 338680

Matrix (Source ID): Soil (506935-001) Method: EPA 8015M Prep Method: EPA 3580M

Source Sample QC1147642 Analyte Result Result **Spiked** Units Recovery Qual Limits DF Diesel C10-C28 4,700 4518 248.5 73% E,NM 62-126 mg/Kg 0.99 Surrogates n-Triacontane 2.856 9.940 mg/Kg 29% 70-130 0.99

Type: Matrix Spike Duplicate Lab ID: QC1147643 Batch: 338680

Matrix (Source ID): Soil (506935-001) Method: EPA 8015M Prep Method: EPA 3580M

Source RPD Sample RPD QC1147643 Analyte DF Result Result **Spiked** Units Recovery Qual Limits Lim Diesel C10-C28 4,434 4518 248.4 -34% E,NM 62-126 35 0.99 mg/Kg Surrogates n-Triacontane 15.81 9.935 159% 70-130 0.99 mg/Kg

Type: Blank Lab ID: QC1146665 Batch: 338386

Matrix: Soil

QC1146665 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Method: EPA 8081A Prep Method: EPA 3546							
alpha-BHC	ND		ug/Kg	5.0	0.99	04/22/24	04/23/24
beta-BHC	ND		ug/Kg	5.0	1.4	04/22/24	04/23/24
gamma-BHC	ND		ug/Kg	5.0	1.0	04/22/24	04/23/24
delta-BHC	ND		ug/Kg	5.0	1.2	04/22/24	04/23/24
Heptachlor	ND		ug/Kg	5.0	1.7	04/22/24	04/23/24
Aldrin	ND		ug/Kg	5.0	1.4	04/22/24	04/23/24
Heptachlor epoxide	ND		ug/Kg	5.0	1.7	04/22/24	04/23/24
Endosulfan I	ND		ug/Kg	5.0	1.4	04/22/24	04/23/24
Dieldrin	ND		ug/Kg	5.0	1.5	04/22/24	04/23/24
4,4'-DDE	ND		ug/Kg	5.0	1.5	04/22/24	04/23/24
Endrin	ND		ug/Kg	5.0	1.7	04/22/24	04/23/24
Endosulfan II	ND		ug/Kg	5.0	1.7	04/22/24	04/23/24
Endosulfan sulfate	ND		ug/Kg	5.0	2.1	04/22/24	04/23/24
4,4'-DDD	ND		ug/Kg	5.0	0.93	04/22/24	04/23/24
Endrin aldehyde	ND		ug/Kg	5.0	1.2	04/22/24	04/23/24
Endrin ketone	ND		ug/Kg	5.0	1.5	04/22/24	04/23/24
4,4'-DDT	ND		ug/Kg	5.0	1.7	04/22/24	04/23/24
Methoxychlor	ND		ug/Kg	10	2.3	04/22/24	04/23/24
Toxaphene	ND		ug/Kg	100	31	04/22/24	04/23/24
Chlordane (Technical)	ND		ug/Kg	50	9.1	04/22/24	04/23/24
Surrogates				Limits			
TCMX	70%		%REC	23-120		04/22/24	04/23/24
Decachlorobiphenyl	64%		%REC	24-120		04/22/24	04/23/24
Method: EPA 8082 Prep Method: EPA 3546							
Aroclor-1016	ND		ug/Kg	50	14	04/22/24	04/23/24
Aroclor-1221	ND		ug/Kg	50	23	04/22/24	04/23/24
Aroclor-1232	ND		ug/Kg	50	19	04/22/24	04/23/24
Aroclor-1242	ND		ug/Kg	50	18	04/22/24	04/23/24
Aroclor-1248	ND		ug/Kg	50	21	04/22/24	04/23/24
Aroclor-1254	ND		ug/Kg	50	6.6	04/22/24	04/23/24
Aroclor-1260	ND		ug/Kg	50	25	04/22/24	04/23/24
Aroclor-1262	ND		ug/Kg	50	16	04/22/24	04/23/24
Aroclor-1268	ND		ug/Kg	50	14	04/22/24	04/23/24
Surrogates			-	Limits			
Decachlorobiphenyl (PCB)	100%		%REC	19-121		04/22/24	04/23/24

Type: Lab Control Sample Lab ID: QC1146666 Batch: 338386

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1146666 Analyte	Result	Spiked	Units	Recovery Qual	Limits
alpha-BHC	43.09	50.51	ug/Kg	85%	22-129
beta-BHC	47.55	50.51	ug/Kg	94%	28-125
gamma-BHC	44.74	50.51	ug/Kg	89%	22-128
delta-BHC	45.89	50.51	ug/Kg	91%	24-131
Heptachlor	41.00	50.51	ug/Kg	81%	18-124
Aldrin	40.15	50.51	ug/Kg	80%	23-120
Heptachlor epoxide	40.43	50.51	ug/Kg	80%	26-120
Endosulfan I	42.11	50.51	ug/Kg	83%	25-126
Dieldrin	44.30	50.51	ug/Kg	88%	23-124
4,4'-DDE	47.50	50.51	ug/Kg	94%	28-121
Endrin	49.09	50.51	ug/Kg	97%	25-127
Endosulfan II	46.20	50.51	ug/Kg	91%	29-121
Endosulfan sulfate	41.96	50.51	ug/Kg	83%	30-121
4,4'-DDD	43.54	50.51	ug/Kg	86%	26-120
Endrin aldehyde	19.77	50.51	ug/Kg	39%	10-120
Endrin ketone	42.70	50.51	ug/Kg	85%	28-125
4,4'-DDT	46.03	50.51	ug/Kg	91%	22-125
Methoxychlor	46.44	50.51	ug/Kg	92%	28-130
Surrogates					
TCMX	41.07	50.51	ug/Kg	81%	23-120
Decachlorobiphenyl	32.68	50.51	ug/Kg	65%	24-120

Type: Matrix Spike Lab ID: QC1146671 Batch: 338386

Matrix (Source ID): Soil (506597-002) Method: EPA 8081A Prep Method: EPA 3546

Basis: Dry

		Source Sample			_			
QC1146671 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	32.47	ND	49.51	ug/Kg	66%		46-120	0.98
beta-BHC	36.62	ND	49.51	ug/Kg	74%		41-120	0.98
gamma-BHC	32.31	ND	49.51	ug/Kg	65%		41-120	0.98
delta-BHC	30.76	ND	49.51	ug/Kg	62%		38-123	0.98
Heptachlor	29.86	ND	49.51	ug/Kg	60%		39-120	0.98
Aldrin	30.26	ND	49.51	ug/Kg	61%		34-120	0.98
Heptachlor epoxide	30.43	ND	49.51	ug/Kg	61%		43-120	0.98
Endosulfan I	31.48	ND	49.51	ug/Kg	64%		45-120	0.98
Dieldrin	33.21	ND	49.51	ug/Kg	67%		45-120	0.98
4,4'-DDE	36.94	ND	49.51	ug/Kg	75%		34-120	0.98
Endrin	36.24	ND	49.51	ug/Kg	73%		40-120	0.98
Endosulfan II	33.58	ND	49.51	ug/Kg	68%		41-120	0.98
Endosulfan sulfate	26.68	ND	49.51	ug/Kg	54%		42-120	0.98
4,4'-DDD	34.07	ND	49.51	ug/Kg	69%		41-120	0.98
Endrin aldehyde	24.21	ND	49.51	ug/Kg	49%		30-120	0.98
Endrin ketone	32.85	ND	49.51	ug/Kg	66%		45-120	0.98
4,4'-DDT	33.93	4.771	49.51	ug/Kg	59%		35-127	0.98
Methoxychlor	32.28	ND	49.51	ug/Kg	65%		42-136	0.98
Surrogates								
TCMX	31.39		49.51	ug/Kg	63%		23-120	0.98
Decachlorobiphenyl	30.74		49.51	ug/Kg	62%		24-120	0.98

Type: Matrix Spike Duplicate Lab ID: QC1146672 Batch: 338386

Matrix (Source ID): Soil (506597-002) Method: EPA 8081A Prep Method: EPA 3546

Basis: Dry

		Source Sample							RPD	
QC1146672 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
alpha-BHC	35.40	ND	49.51	ug/Kg	72%		46-120	9	30	0.98
beta-BHC	44.67	ND	49.51	ug/Kg	90%		41-120	20	30	0.98
gamma-BHC	35.61	ND	49.51	ug/Kg	72%		41-120	10	30	0.98
delta-BHC	35.42	ND	49.51	ug/Kg	72%		38-123	14	30	0.98
Heptachlor	32.43	ND	49.51	ug/Kg	66%		39-120	8	30	0.98
Aldrin	32.56	ND	49.51	ug/Kg	66%		34-120	7	30	0.98
Heptachlor epoxide	32.71	ND	49.51	ug/Kg	66%		43-120	7	30	0.98
Endosulfan I	34.70	ND	49.51	ug/Kg	70%		45-120	10	30	0.98
Dieldrin	35.87	ND	49.51	ug/Kg	72%		45-120	8	30	0.98
4,4'-DDE	39.32	ND	49.51	ug/Kg	79%		34-120	6	30	0.98
Endrin	39.48	ND	49.51	ug/Kg	80%		40-120	9	30	0.98
Endosulfan II	36.16	ND	49.51	ug/Kg	73%		41-120	7	30	0.98
Endosulfan sulfate	31.29	ND	49.51	ug/Kg	63%		42-120	16	30	0.98
4,4'-DDD	36.50	ND	49.51	ug/Kg	74%		41-120	7	30	0.98
Endrin aldehyde	24.15	ND	49.51	ug/Kg	49%		30-120	0	30	0.98
Endrin ketone	36.24	ND	49.51	ug/Kg	73%		45-120	10	30	0.98
4,4'-DDT	39.67	4.771	49.51	ug/Kg	70%		35-127	16	30	0.98
Methoxychlor	35.07	ND	49.51	ug/Kg	71%		42-136	8	30	0.98
Surrogates										
TCMX	32.92		49.51	ug/Kg	66%	•	23-120			0.98
Decachlorobiphenyl	33.36		49.51	ug/Kg	67%	•	24-120			0.98

Type: Lab Control Sample Lab ID: QC1146673 Batch: 338386

Matrix: Soil Method: EPA 8082 Prep Method: EPA 3546

QC1146673 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Aroclor-1016	507.1	495.0	ug/Kg	102%		14-150
Aroclor-1260	509.9	495.0	ug/Kg	103%		10-150
Surrogates						
Decachlorobiphenyl (PCB)	51.43	49.50	ug/Kg	104%		19-121

Type: Matrix Spike Lab ID: QC1146674 Batch: 338386

Matrix (Source ID): Soil (506597-014) Method: EPA 8082 Prep Method: EPA 3546

Basis: Dry

Source Sample QC1146674 Analyte Result Result Spiked Units Recovery Qual Limits DF Aroclor-1016 42-127 457.2 ND 500.1 91% 0.99 ug/Kg Aroclor-1260 440.4 38-130 ND 500.1 ug/Kg 88% 0.99 Surrogates 32.65 Decachlorobiphenyl (PCB) 50.01 0.99 ug/Kg 65% 19-121

Type: Matrix Spike Duplicate Lab ID: QC1146675 Batch: 338386

Matrix (Source ID): Soil (506597-014) Method: EPA 8082 Prep Method: EPA 3546

Basis: Dry

Source Sample RPD QC1146675 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF Aroclor-1016 512.6 500.1 103% 42-127 30 0.99 ND ug/Kg 11 Aroclor-1260 568.1 ND 500.1 ug/Kg 114% 38-130 25 30 0.99 Surrogates Decachlorobiphenyl (PCB) 42.95 50.01 ug/Kg 86% 19-121 0.99

Type: Lab Control Sample Lab ID: QC1147266 Batch: 338582

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1147266 Analyte	Result	Spiked	Units	Recovery Qua	l Limits
1,1-Dichloroethene	49.79	50.00	ug/Kg	100%	70-131
MTBE	49.89	50.00	ug/Kg	100%	69-130
Benzene	49.67	50.00	ug/Kg	99%	70-130
Trichloroethene	49.46	50.00	ug/Kg	99%	70-130
Toluene	50.17	50.00	ug/Kg	100%	70-130
Chlorobenzene	52.03	50.00	ug/Kg	104%	70-130
Surrogates					
Dibromofluoromethane	48.33	50.00	ug/Kg	97%	70-130
1,2-Dichloroethane-d4	49.03	50.00	ug/Kg	98%	70-145
Toluene-d8	50.49	50.00	ug/Kg	101%	70-145
Bromofluorobenzene	51.46	50.00	ug/Kg	103%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1147267 Batch: 338582

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

QC1147267 Analyte	Result	Spiked	Units	Recovery Qual	Limits	RPD	RPD Lim
1,1-Dichloroethene	49.40	50.00	ug/Kg	99%	70-131	1	33
MTBE	49.27	50.00	ug/Kg	99%	69-130	1	30
Benzene	48.77	50.00	ug/Kg	98%	70-130	2	30
Trichloroethene	47.10	50.00	ug/Kg	94%	70-130	5	30
Toluene	46.97	50.00	ug/Kg	94%	70-130	7	30
Chlorobenzene	49.06	50.00	ug/Kg	98%	70-130	6	30
Surrogates							
Dibromofluoromethane	51.31	50.00	ug/Kg	103%	70-130		
1,2-Dichloroethane-d4	50.00	50.00	ug/Kg	100%	70-145		
Toluene-d8	50.00	50.00	ug/Kg	100%	70-145		
Bromofluorobenzene	51.35	50.00	ug/Kg	103%	70-145		

Type: Matrix Spike Lab ID: QC1147268 Batch: 338582

Matrix (Source ID): Soil (506597-005) Method: EPA 8260B Prep Method: EPA 5030B

Basis: Dry

		Source Sample						
QC1147268 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	51.08	ND	50.00	ug/Kg	102%		70-141	1
MTBE	44.62	ND	50.00	ug/Kg	89%		59-130	1
Benzene	46.51	ND	50.00	ug/Kg	93%		70-130	1
Trichloroethene	41.66	ND	50.00	ug/Kg	83%		69-130	1
Toluene	44.21	ND	50.00	ug/Kg	88%		70-130	1
Chlorobenzene	42.08	ND	50.00	ug/Kg	84%		70-130	1
Surrogates								
Dibromofluoromethane	49.08		50.00	ug/Kg	98%		70-145	1
1,2-Dichloroethane-d4	49.70		50.00	ug/Kg	99%		70-145	1
Toluene-d8	50.36		50.00	ug/Kg	101%		70-145	1
Bromofluorobenzene	52.38		50.00	ug/Kg	105%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1147269 Batch: 338582

Matrix (Source ID): Soil (506597-005) Method: EPA 8260B Prep Method: EPA 5030B

Basis: Dry

		Source Sample							RPD	
QC1147269 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	52.88	ND	50.00	ug/Kg	106%		70-141	3	43	1
MTBE	47.12	ND	50.00	ug/Kg	94%		59-130	5	30	1
Benzene	47.16	ND	50.00	ug/Kg	94%		70-130	1	30	1
Trichloroethene	43.35	ND	50.00	ug/Kg	87%		69-130	4	30	1
Toluene	44.70	ND	50.00	ug/Kg	89%		70-130	1	30	1
Chlorobenzene	41.82	ND	50.00	ug/Kg	84%		70-130	1	30	1
Surrogates										
Dibromofluoromethane	49.94		50.00	ug/Kg	100%		70-145			1
1,2-Dichloroethane-d4	49.21		50.00	ug/Kg	98%		70-145			1
Toluene-d8	50.10		50.00	ug/Kg	100%		70-145			1
Bromofluorobenzene	51.49		50.00	ua/Ka	103%		70-145			1

Type: Blank Lab ID: QC1147270 Batch: 338582
Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

Matrix. 3011	motriou: Li 7	Method. LFA 0200B			Frep Method. LFA 3030B					
QC1147270 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed			
Freon 12	ND		ug/Kg	250	130	04/24/24	04/24/24			
Chloromethane	ND		ug/Kg	250	180	04/24/24	04/24/24			
Vinyl Chloride	ND		ug/Kg	250	81	04/24/24	04/24/24			
Bromomethane	ND		ug/Kg	250	190	04/24/24	04/24/24			
Chloroethane	ND		ug/Kg	250	130	04/24/24	04/24/24			
Trichlorofluoromethane	ND		ug/Kg	250	99	04/24/24	04/24/24			
Acetone	ND		ug/Kg	5,000	1,900	04/24/24	04/24/24			
Freon 113	ND		ug/Kg	250	69	04/24/24	04/24/24			
1,1-Dichloroethene	ND		ug/Kg	250	64	04/24/24	04/24/24			
Methylene Chloride	ND		ug/Kg	1,000		04/24/24	04/24/24			
MTBE	ND		ug/Kg	250	66	04/24/24	04/24/24			
trans-1,2-Dichloroethene	ND		ug/Kg	250	49	04/24/24	04/24/24			
1,1-Dichloroethane	ND		ug/Kg	250	52	04/24/24	04/24/24			
2-Butanone	ND		ug/Kg	5,000	280	04/24/24	04/24/24			
cis-1,2-Dichloroethene	ND		ug/Kg	250	59	04/24/24	04/24/24			
2,2-Dichloropropane	ND		ug/Kg	250	45	04/24/24	04/24/24			
Chloroform	ND		ug/Kg	250	78	04/24/24	04/24/24			
Bromochloromethane	ND		ug/Kg	250	68	04/24/24	04/24/24			
1,1,1-Trichloroethane	ND		ug/Kg	250	57	04/24/24	04/24/24			
1,1-Dichloropropene	ND		ug/Kg	250	68	04/24/24	04/24/24			
Carbon Tetrachloride	ND		ug/Kg	250	56	04/24/24	04/24/24			
1,2-Dichloroethane	ND		ug/Kg	250	98	04/24/24	04/24/24			
Benzene	ND		ug/Kg	250	33	04/24/24	04/24/24			
Trichloroethene	ND		ug/Kg	250	38	04/24/24	04/24/24			
1,2-Dichloropropane	ND		ug/Kg	250	31	04/24/24	04/24/24			
Bromodichloromethane	ND		ug/Kg	250	40	04/24/24	04/24/24			
Dibromomethane	ND		ug/Kg	250	55	04/24/24	04/24/24			
4-Methyl-2-Pentanone	ND		ug/Kg	250	85	04/24/24	04/24/24			
cis-1,3-Dichloropropene	ND ND		ug/Kg	250	44	04/24/24	04/24/24			
Toluene	ND ND		ug/Kg	250	51	04/24/24	04/24/24			
trans-1,3-Dichloropropene	ND ND		ug/Kg	250	57	04/24/24	04/24/24			
1,1,2-Trichloroethane	ND		ug/Kg	250	33	04/24/24	04/24/24			
1,3-Dichloropropane	ND		ug/Kg	250	43	04/24/24	04/24/24			
Tetrachloroethene	ND		ug/Kg	250	37	04/24/24	04/24/24			
Dibromochloromethane	ND		ug/Kg	250	41	04/24/24	04/24/24			
1,2-Dibromoethane	ND ND		ug/Kg	250	31	04/24/24	04/24/24			
Chlorobenzene	ND ND		ug/Kg	250	46	04/24/24	04/24/24			
1,1,1,2-Tetrachloroethane	ND ND		ug/Kg	250	57	04/24/24	04/24/24			
Ethylbenzene	ND		ug/Kg ug/Kg	250	54	04/24/24	04/24/24			
m,p-Xylenes	ND		ug/Kg	500	120	04/24/24	04/24/24			
o-Xylene	ND ND		ug/Kg ug/Kg	250	52	04/24/24	04/24/24			
Styrene	ND ND		ug/Kg ug/Kg	250	47	04/24/24	04/24/24			
Styrene Bromoform	ND ND		ug/Kg ug/Kg	250	47	04/24/24	04/24/24			
			• •							
sopropylbenzene	ND ND		ug/Kg	250	42	04/24/24	04/24/24			
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	54	04/24/24	04/24/24			
1,2,3-Trichloropropane	ND		ug/Kg	250	72	04/24/24	04/24/24			
Propylbenzene	ND		ug/Kg	250	40	04/24/24	04/24/24			

QC1147270 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Bromobenzene	ND		ug/Kg	250	45	04/24/24	04/24/24
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	04/24/24	04/24/24
2-Chlorotoluene	ND		ug/Kg	250	52	04/24/24	04/24/24
4-Chlorotoluene	ND		ug/Kg	250	41	04/24/24	04/24/24
tert-Butylbenzene	ND		ug/Kg	250	33	04/24/24	04/24/24
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	04/24/24	04/24/24
sec-Butylbenzene	ND		ug/Kg	250	37	04/24/24	04/24/24
para-Isopropyl Toluene	ND		ug/Kg	250	37	04/24/24	04/24/24
1,3-Dichlorobenzene	ND		ug/Kg	250	38	04/24/24	04/24/24
1,4-Dichlorobenzene	ND		ug/Kg	250	42	04/24/24	04/24/24
n-Butylbenzene	ND		ug/Kg	250	58	04/24/24	04/24/24
1,2-Dichlorobenzene	ND		ug/Kg	250	44	04/24/24	04/24/24
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	250	77	04/24/24	04/24/24
1,2,4-Trichlorobenzene	ND		ug/Kg	250	67	04/24/24	04/24/24
Hexachlorobutadiene	ND		ug/Kg	250	56	04/24/24	04/24/24
Naphthalene	ND		ug/Kg	250	73	04/24/24	04/24/24
1,2,3-Trichlorobenzene	ND		ug/Kg	250	58	04/24/24	04/24/24
Surrogates				Limits			
Dibromofluoromethane	99%		%REC	70-130		04/24/24	04/24/24
1,2-Dichloroethane-d4	98%		%REC	70-145		04/24/24	04/24/24
Toluene-d8	98%		%REC	70-145		04/24/24	04/24/24
Bromofluorobenzene	101%		%REC	70-145		04/24/24	04/24/24

Type: Blank Lab ID: QC1147271 Batch: 338582

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5030B

Matrix: Soil	Method: EPA		Prep Method: EPA 5030B					
QC1147271 Analyte	Result	Qual Un	its RL	MDL	Prepared	Analyzed		
Freon 12	ND	ug/		0.9	04/24/24	04/24/24		
Chloromethane	ND	ug/	-	0.8	04/24/24	04/24/24		
Vinyl Chloride	ND	ug/	-	1.0	04/24/24	04/24/24		
Bromomethane	ND	ug/	-	1.1	04/24/24	04/24/24		
Chloroethane	ND	ug/	-	2.5	04/24/24	04/24/24		
Trichlorofluoromethane	ND	ug/	-	0.8	04/24/24	04/24/24		
Acetone	ND	ug/	-	32	04/24/24	04/24/24		
Freon 113	ND	ug/	-	0.7	04/24/24	04/24/24		
1,1-Dichloroethene	ND	ug/		1.0	04/24/24	04/24/24		
Methylene Chloride	ND	ug/	Kg 20		04/24/24	04/24/24		
MTBE	ND	ug/	-	1.0	04/24/24	04/24/24		
rans-1,2-Dichloroethene	ND	ug/	-	1.1	04/24/24	04/24/24		
1,1-Dichloroethane	ND	ug/	-	0.9	04/24/24	04/24/24		
2-Butanone	ND	ug/	-	4.3	04/24/24	04/24/24		
cis-1,2-Dichloroethene	ND	ug/	-	0.8	04/24/24	04/24/24		
2,2-Dichloropropane	ND	ug/	-	2.5	04/24/24	04/24/24		
Chloroform	ND	ug/	•	1.0	04/24/24	04/24/24		
Bromochloromethane	ND	ug/	•	0.4	04/24/24	04/24/24		
1,1,1-Trichloroethane	ND	ug/	-	1.3	04/24/24	04/24/24		
1,1-Dichloropropene	ND	ug/	-	0.8	04/24/24	04/24/24		
Carbon Tetrachloride	ND	ug/	-	1.2	04/24/24	04/24/24		
1,2-Dichloroethane	ND	ug/	-	1.0	04/24/24	04/24/24		
Benzene	ND	ug/		0.5	04/24/24	04/24/24		
Trichloroethene	ND	ug/	-	0.7	04/24/24	04/24/24		
1,2-Dichloropropane	ND	ug/	•	0.8	04/24/24	04/24/24		
Bromodichloromethane	ND	ug/	•	1.1	04/24/24	04/24/24		
Dibromomethane	ND	ug/		0.5	04/24/24	04/24/24		
4-Methyl-2-Pentanone	ND	ug/	-	1.6	04/24/24	04/24/24		
cis-1,3-Dichloropropene	ND	ug/	-	1.0	04/24/24	04/24/24		
Toluene	ND	ug/	-	0.9	04/24/24	04/24/24		
rans-1,3-Dichloropropene	ND	ug/		1.4	04/24/24	04/24/24		
1,1,2-Trichloroethane	ND	ug/	Kg 5.0	0.4	04/24/24	04/24/24		
1,3-Dichloropropane	ND	ug/		0.6	04/24/24	04/24/24		
Tetrachloroethene	ND	ug/	~	0.5	04/24/24	04/24/24		
Dibromochloromethane	ND	ug/	-	0.6	04/24/24	04/24/24		
1,2-Dibromoethane	ND	ug/	Kg 5.0	0.6	04/24/24	04/24/24		
Chlorobenzene	ND	ug/	•	0.4	04/24/24	04/24/24		
1,1,1,2-Tetrachloroethane	ND	ug/	-	0.7	04/24/24	04/24/24		
Ethylbenzene	ND	ug/	~	0.6	04/24/24	04/24/24		
n,p-Xylenes	ND	ug/	•	0.8	04/24/24	04/24/24		
o-Xylene	ND	ug/	•	0.5	04/24/24	04/24/24		
Styrene	ND	ug/		0.3	04/24/24	04/24/24		
Bromoform	ND	ug/	-	1.0	04/24/24	04/24/24		
sopropylbenzene	ND	ug/	~	0.3	04/24/24	04/24/24		
1,1,2,2-Tetrachloroethane	ND	ug/	•	0.5	04/24/24	04/24/24		
		_	-					
1,2,3-Trichloropropane	ND	ug/	Kg 5.0	1.2	04/24/24	04/24/24		

QC1147271 Analyte	Result	Qual Uı	nits	RL	MDL	Prepared	Analyzed
Bromobenzene	ND	ug	ı/Kg	5.0	0.5	04/24/24	04/24/24
1,3,5-Trimethylbenzene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
2-Chlorotoluene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
4-Chlorotoluene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
tert-Butylbenzene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
1,2,4-Trimethylbenzene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
sec-Butylbenzene	ND	ug	ı/Kg	5.0	0.5	04/24/24	04/24/24
para-Isopropyl Toluene	ND	ug	ı/Kg	5.0	0.3	04/24/24	04/24/24
1,3-Dichlorobenzene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
1,4-Dichlorobenzene	ND	ug	ı/Kg	5.0	0.3	04/24/24	04/24/24
n-Butylbenzene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
1,2-Dichlorobenzene	ND	ug	ı/Kg	5.0	0.4	04/24/24	04/24/24
1,2-Dibromo-3-Chloropropane	ND	ug	ı/Kg	5.0	1.2	04/24/24	04/24/24
1,2,4-Trichlorobenzene	ND	ug	ı/Kg	5.0	0.6	04/24/24	04/24/24
Hexachlorobutadiene	ND	ug	ı/Kg	5.0	0.6	04/24/24	04/24/24
Naphthalene	ND	ug	ı/Kg	5.0	1.2	04/24/24	04/24/24
1,2,3-Trichlorobenzene	ND	ug	ı/Kg	5.0	0.7	04/24/24	04/24/24
Surrogates				Limits			
Dibromofluoromethane	99%	%F	REC	70-130		04/24/24	04/24/24
1,2-Dichloroethane-d4	102%	%F	REC	70-145		04/24/24	04/24/24
Toluene-d8	99%	%F	REC	70-145		04/24/24	04/24/24
Bromofluorobenzene	101%	%F	REC	70-145		04/24/24	04/24/24

Type:	Blank Lab ID:	QC1146814	Batch:	338434
Matrix:	Soil Method:	EPA 8270C-SIM	Prep Method:	EPA 3546

QC1146814 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
1-Methylnaphthalene	ND		ug/Kg	10	1.5	04/22/24	04/23/24
2-Methylnaphthalene	ND		ug/Kg	10	1.5	04/22/24	04/23/24
Naphthalene	ND		ug/Kg	10	3.6	04/22/24	04/23/24
Acenaphthylene	ND		ug/Kg	10	1.6	04/22/24	04/23/24
Acenaphthene	ND		ug/Kg	10	1.0	04/22/24	04/23/24
Fluorene	ND		ug/Kg	10	1.2	04/22/24	04/23/24
Phenanthrene	ND		ug/Kg	10	2.2	04/22/24	04/23/24
Anthracene	ND		ug/Kg	10	1.4	04/22/24	04/23/24
Fluoranthene	ND		ug/Kg	10	3.3	04/22/24	04/23/24
Pyrene	ND		ug/Kg	10	3.6	04/22/24	04/23/24
Benzo(a)anthracene	ND		ug/Kg	10	1.1	04/22/24	04/23/24
Chrysene	ND		ug/Kg	10	0.96	04/22/24	04/23/24
Benzo(b)fluoranthene	ND		ug/Kg	10	0.92	04/22/24	04/23/24
Benzo(k)fluoranthene	ND		ug/Kg	10	1.0	04/22/24	04/23/24
Benzo(a)pyrene	ND		ug/Kg	10	1.3	04/22/24	04/23/24
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	10	1.5	04/22/24	04/23/24
Dibenz(a,h)anthracene	ND		ug/Kg	10	2.8	04/22/24	04/23/24
Benzo(g,h,i)perylene	ND		ug/Kg	10	1.6	04/22/24	04/23/24
Surrogates				Limits			
Nitrobenzene-d5	89%		%REC	27-125		04/22/24	04/23/24
2-Fluorobiphenyl	89%		%REC	30-120		04/22/24	04/23/24
Terphenyl-d14	97%		%REC	33-155		04/22/24	04/23/24

Type: Lab Control Sample Lab ID: QC1146815 Batch: 338434

Matrix: Soil Method: EPA 8270C-SIM Prep Method: EPA 3546

QC1146815 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1-Methylnaphthalene	171.4	198.0	ug/Kg	87%	28-130
2-Methylnaphthalene	173.0	198.0	ug/Kg	87%	33-130
Naphthalene	179.2	198.0	ug/Kg	91%	25-130
Acenaphthylene	167.2	198.0	ug/Kg	84%	28-130
Acenaphthene	165.3	198.0	ug/Kg	83%	32-130
Fluorene	176.3	198.0	ug/Kg	89%	35-130
Phenanthrene	175.9	198.0	ug/Kg	89%	35-132
Anthracene	177.7	198.0	ug/Kg	90%	34-136
Fluoranthene	178.6	198.0	ug/Kg	90%	34-139
Pyrene	175.8	198.0	ug/Kg	89%	35-134
Benzo(a)anthracene	183.6	198.0	ug/Kg	93%	30-132
Chrysene	184.0	198.0	ug/Kg	93%	29-130
Benzo(b)fluoranthene	175.8	198.0	ug/Kg	89%	32-137
Benzo(k)fluoranthene	190.6	198.0	ug/Kg	96%	32-130
Benzo(a)pyrene	152.9	198.0	ug/Kg	77%	10-138
Indeno(1,2,3-cd)pyrene	194.6	198.0	ug/Kg	98%	34-132
Dibenz(a,h)anthracene	178.4	198.0	ug/Kg	90%	32-130
Benzo(g,h,i)perylene	185.9	198.0	ug/Kg	94%	27-130
Surrogates					
Nitrobenzene-d5	186.1	198.0	ug/Kg	94%	27-125
2-Fluorobiphenyl	180.0	198.0	ug/Kg	91%	30-120
Terphenyl-d14	183.3	198.0	ug/Kg	93%	33-155

Type: Matrix Spike Lab ID: QC1146816 Batch: 338434 Matrix (Source ID): Soil (506597-002) Method: EPA 8270C-SIM Prep Method: EPA 3546

Basis: Dry

		Source Sample						
QC1146816 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1-Methylnaphthalene	170.1	34.70	203.0	ug/Kg	67%		25-130	4
2-Methylnaphthalene	182.1	50.19	203.0	ug/Kg	65%		32-133	4
Naphthalene	184.4	50.48	203.0	ug/Kg	66%		33-130	4
Acenaphthylene	172.3	21.18	203.0	ug/Kg	74%		14-157	4
Acenaphthene	153.6	ND	203.0	ug/Kg	76%		28-134	4
Fluorene	170.2	ND	203.0	ug/Kg	84%		27-140	4
Phenanthrene	224.7	48.83	203.0	ug/Kg	87%		29-147	4
Anthracene	225.7	33.27	203.0	ug/Kg	95%		24-156	4
Fluoranthene	323.4	140.8	203.0	ug/Kg	90%		28-160	4
Pyrene	267.7	94.09	203.0	ug/Kg	85%		26-153	4
Benzo(a)anthracene	239.0	42.81	203.0	ug/Kg	97%		26-174	4
Chrysene	352.6	153.0	203.0	ug/Kg	98%		40-139	4
Benzo(b)fluoranthene	530.6	341.2	203.0	ug/Kg	93%		36-164	4
Benzo(k)fluoranthene	273.8	86.51	203.0	ug/Kg	92%		36-161	4
Benzo(a)pyrene	194.4	49.93	203.0	ug/Kg	71%		18-173	4
Indeno(1,2,3-cd)pyrene	241.8	79.85	203.0	ug/Kg	80%		26-154	4
Dibenz(a,h)anthracene	159.3	18.11	203.0	ug/Kg	70%		38-132	4
Benzo(g,h,i)perylene	230.6	77.13	203.0	ug/Kg	76%		36-130	4
Surrogates								
Nitrobenzene-d5	115.7		203.0	ug/Kg	57%		27-125	4
2-Fluorobiphenyl	154.3		203.0	ug/Kg	76%		30-120	4
Terphenyl-d14	170.8		203.0	ug/Kg	84%		33-155	4

Type: Matrix Spike Duplicate Lab ID: QC1146817 Batch: 338434

Matrix (Source ID): Soil (506597-002) Method: EPA 8270C-SIM Prep Method: EPA 3546

Basis: Dry

		Source Sample							RPD	
QC1146817 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1-Methylnaphthalene	177.1	34.70	201.0	ug/Kg	71%		25-130	5	35	4
2-Methylnaphthalene	192.5	50.19	201.0	ug/Kg	71%		32-133	6	35	4
Naphthalene	185.9	50.48	201.0	ug/Kg	67%		33-130	2	35	4
Acenaphthylene	169.4	21.18	201.0	ug/Kg	74%		14-157	1	35	4
Acenaphthene	148.8	ND	201.0	ug/Kg	74%		28-134	2	35	4
Fluorene	161.2	ND	201.0	ug/Kg	80%		27-140	4	35	4
Phenanthrene	218.0	48.83	201.0	ug/Kg	84%		29-147	2	35	4
Anthracene	220.4	33.27	201.0	ug/Kg	93%		24-156	2	35	4
Fluoranthene	313.3	140.8	201.0	ug/Kg	86%		28-160	3	35	4
Pyrene	258.6	94.09	201.0	ug/Kg	82%		26-153	3	35	4
Benzo(a)anthracene	235.8	42.81	201.0	ug/Kg	96%		26-174	1	35	4
Chrysene	350.5	153.0	201.0	ug/Kg	98%		40-139	0	35	4
Benzo(b)fluoranthene	535.8	341.2	201.0	ug/Kg	97%		36-164	1	35	4
Benzo(k)fluoranthene	269.7	86.51	201.0	ug/Kg	91%		36-161	1	35	4
Benzo(a)pyrene	193.5	49.93	201.0	ug/Kg	71%		18-173	0	35	4
Indeno(1,2,3-cd)pyrene	244.6	79.85	201.0	ug/Kg	82%		26-154	2	35	4
Dibenz(a,h)anthracene	160.6	18.11	201.0	ug/Kg	71%		38-132	2	35	4
Benzo(g,h,i)perylene	230.9	77.13	201.0	ug/Kg	76%		36-130	1	35	4
Surrogates										
Nitrobenzene-d5	88.95		201.0	ug/Kg	44%		27-125			4
2-Fluorobiphenyl	154.3		201.0	ug/Kg	77%		30-120			4
Terphenyl-d14	162.4		201.0	ug/Kg	81%		33-155			4

Value is outside QC limits

E Response exceeds instrument's linear

range

J Estimated value

ND Not Detected

NM Not Meaningful

Laboratory Job Number 506597

Subcontracted Products

SGS Forensic

Bulk Asbestos Material Analysis

(Air Resources Board Method 435, June 6, 1991)

Enthalpy Analytical LLC Client ID: 1137 Miguel Gamboa N016131 **Report Number:** 2323 5th Street 04/23/24 **Date Received:** 04/30/24 **Date Analyzed:** Berkeley, CA 94710 **Date Printed:** 04/30/24 **SGSFL Job ID: Job ID/Site:** PO-064166- Enthalpy EO#506597 1137 8 **Total Samples Submitted:** PLM Report Number: N/A **Total Samples Analyzed:** 8

Sample Preparation and Analysis:

Samples were analyzed by the Air Resources Board's Method 435, Determination of Asbestos Content of Serpentine Aggregate. Samples were ground to 200 particle size in the laboratory. Approximately 1 pint was retained for analysis. Samples were prepared for observation according to the guidelines of Exception I and Exception II as defined by the 435 Method. Samples which contained less than 10% asbestos were prepared for observation according to the point count technique as defined by the 435 Method. This analysis was performed with a standard cross-hair reticle.

Sample ID	Lab Number	Layer Description
GRB 1	12743343	Grey Soil
Visual Estimation Results:		
Matrix percentage of entire sample	e 100	
Visual estimation percentage: Asbestos type(s) detected:	None Detected None Detected	
Comment: This result meets the	requirements of Ex	xception I as defined by the 435 Method.
GRB 4	12743344	Grey Soil
Visual Estimation Results:		
Matrix percentage of entire sample	e 100	
Visual estimation percentage: Asbestos type(s) detected:	None Detected None Detected	

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

GRB 6 12743345 **Grey Soil**

Visual Estimation Results:

Matrix percentage of entire sample 100 **Visual estimation percentage:** None Detected

Asbestos type(s) detected: None Detected

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

GRB 9 12743346 **Grey Soil**

Visual Estimation Results:

Matrix percentage of entire sample 100 **Visual estimation percentage:** None Detected

Asbestos type(s) detected: None Detected

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

Bulk Asbestos Material Analysis

(Air Resources Board Method 435, June 6, 1991)

Enthalpy Analytical LLC Client ID: 1137 Miguel Gamboa N016131 **Report Number:** 2323 5th Street 04/23/24 **Date Received:** 04/30/24 **Date Analyzed:** Berkeley, CA 94710 **Date Printed:** 04/30/24 **SGSFL Job ID: Job ID/Site:** PO-064166- Enthalpy EO#506597 1137 8 **Total Samples Submitted:** PLM Report Number: N/A **Total Samples Analyzed:** 8

Sample Preparation and Analysis:

Samples were analyzed by the Air Resources Board's Method 435, Determination of Asbestos Content of Serpentine Aggregate. Samples were ground to 200 particle size in the laboratory. Approximately 1 pint was retained for analysis. Samples were prepared for observation according to the guidelines of Exception I and Exception II as defined by the 435 Method. Samples which contained less than 10% asbestos were prepared for observation according to the point count technique as defined by the 435 Method. This analysis was performed with a standard cross-hair reticle.

Sample ID	Lab Number	Layer Description
GRB 11	12743347	Grey Soil
Visual Estimation Results:		
Matrix percentage of entire sampl	e 100	
Visual estimation percentage: Asbestos type(s) detected:	None Detected None Detected	
Comment: This result meets the	requirements of Ex	sception I as defined by the 435 Method.
GRB 13	12743348	Grey Soil
Visual Estimation Results:		
Matrix percentage of entire sampl	e 100	
Visual estimation percentage: Asbestos type(s) detected:	None Detected None Detected	
Comment: This result meets the	requirements of Ex	sception I as defined by the 435 Method.

GRB 15 12743349 **Grey Soil**

Visual Estimation Results:

Matrix percentage of entire sample 100 **Visual estimation percentage:** None Detected

Asbestos type(s) detected: None Detected

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

GRB 17 12743350 **Grey Soil**

Visual Estimation Results:

Matrix percentage of entire sample 100 **Visual estimation percentage:** None Detected

Asbestos type(s) detected: None Detected

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

Bulk Asbestos Material Analysis

(Air Resources Board Method 435, June 6, 1991)

Enthalpy Analytical LLC Miguel Gamboa 2323 5th Street	Client ID: 1137 Report Number: N016131 Date Received: 04/23/24
Berkeley, CA 94710	Date Analyzed: 04/30/24 Date Printed: 04/30/24
Job ID/Site: PO-064166- Enthalpy EO#506597	SGSFL Job ID: 1137 Total Samples Submitted: 8
PLM Report Number: N/A	Total Samples Analyzed: 8

Sample Preparation and Analysis:

Samples were analyzed by the Air Resources Board's Method 435, Determination of Asbestos Content of Serpentine Aggregate. Samples were ground to 200 particle size in the laboratory. Approximately 1 pint was retained for analysis. Samples were prepared for observation according to the guidelines of Exception I and Exception II as defined by the 435 Method. Samples which contained less than 10% asbestos were prepared for observation according to the point count technique as defined by the 435 Method. This analysis was performed with a standard cross-hair reticle.

Sample ID Lab Number Layer Description

Maria E. Casper

Maria Cosper, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification (LOQ) = 0.25%. Trace denotes the presence of asbestos below the LOQ. ND = None Detected. Analytical results and reports are generated by SGS Forensic Laboratories (SGSFL) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by SGSFL to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by SGSFL. The client is solely responsible for the use and interpretation of test results and reports requested from SGSFL. This report must not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. Government. SGSFL is not able to assess the degree of hazard resulting from materials analyzed. SGS Forensic Laboratories reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted.

Project Name: MST Soil - Marina Station

Project Address: Marina through Sand City, CA

Lab Report #: 506595

Sample Date: 4/16/2024

License #22	ReGen STLC Trigger mg/kg	Tier 1 2019	Residential 2019	Commercial 2019	MS1-4	MS2-1	MS3-2	MS4-0.5
Metals 6010B mg/kg						<u> </u>		
Sb - Antimony As - Arsenic	0.6 5	11 0.067	11 0.067	160 0.31	ND 2	ND 2.2	ND 6.4	ND 1.8
Ba - Barium	100	390	15000	220000	20	23	25	12
Be - Beryllium Cd - Cadmium	0.4 0.5	5 1.9	16 78	230 1100	0.14 0.098	0.14 0.12	0.15 0.14	0.15 0.047
Cr - Chromium (Total)	5	160	-	-	10	9.5	13	9
Co - Cobalt Cu - Copper	5 200	23 180	23 3100	350 47000	2.5 10	2.6 10	3.6 24	1.6 1.8
Pb - Lead	5	32	80	320	27	44	40	1.5
Hg - Mercury (7471B)	0.2	13 6.9	13 390	190 5800	ND ND	ND ND	ND ND	ND ND
Mo - Molybdenum Ni - Nickel	10	86	820	11000	טא 11	10	11	8.1
Se - Selenium	1	2.4	390	5800	ND	ND	ND NB	ND
Ag - Silver TI - Thallium	5 0.05	25 0.78	390 0.78	5800 12	ND ND	ND ND	ND ND	ND ND
V - Vanadium	2	18	390	5800	14	16	27	9.2
Zn - Zinc TPH 8260TPH mg/kg	2000	340	23000	350000	21	24	32	11
TPHg		100	430	2000	ND	ND	ND	ND
TPH 8015B mg/kg TPHd		260	260	1200	9.2	17	67	4.1
TPHmo		1600	12000	200000	42	44	81	5.1
Pesticides 8081B ug/kg Alpha BHC (Alpha Hexachlorocyclohexane)					ND	l ND	ND	ND
Beta Bhc (Beta Hexachlorocyclohexane)					ND ND	ND ND	ND ND	ND ND
Delta Bhc (Delta Hexachlorocyclohexane)					ND	ND	ND	ND
Gamma Bhc (Lindane) Heptachlor	 	7.4 120	550 120	25000 530	ND ND	ND ND	ND ND	ND ND
Aldrin		2.4	35	150	ND	ND	ND	ND
Heptachlor Epoxide Endosulfan I	 	0.18 9.8	620 419510	280 5783990	ND ND	ND ND	ND ND	ND ND
Dieldrin		0.46	37	160	ND	ND	ND	ND
4,4-DDE Endrin	<u> </u>	330 1.1	1800 21000	8300 290000	ND ND	ND ND	2.2 ND	ND ND
Endosulfan II			419510	5783990	ND	ND	ND	ND
Endosulfan Sulfate		 2700	 2700	12000	ND ND	ND ND	ND ND	ND ND
4,4-DDD Endrin Aldehyde		2700	2700	12000 	ND ND	ND ND	ND ND	ND ND
Endrin Ketone					ND	ND	ND	ND
4,4-DDT Methoxychlor	 	1.1 13	1900 350000	8500 4800000	ND ND	3.4 ND	4 ND	ND ND
Toxaphene		510	510	2200	ND	ND	ND	ND
Chlordane PCBs 8082A ug/kg		8.5	480	2200	ND	ND	ND	ND
Aroclor1016		230	230	230	ND	ND	ND	ND
Aroclor1221 Aroclor1232		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND
Aroclor1232 Aroclor1242		230	230	230	ND	ND ND	ND ND	ND
Arcelor1254		230	230	230	ND ND	ND	ND ND	ND ND
Aroclor1254 Aroclor1260		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND
Aroclor1262		230	230	230	ND	ND	ND	ND
Aroclor1268 Total PCBs	 	230 230	230 230	230 940	ND 0	ND 0	ND 0	ND 0
VOCs 8260B ug/kg		4-	2000	0000	N.D.		NID	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		17 7000	2000 1700000	8900 7300000	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane		18	610	2700	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloroethane		 76	 1200	 5100	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane		200	3600	16000	ND	ND	ND	ND
1,1-Dichloroethene 1,1-Dichloropropene		540	83000	350000	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichlorobenzene					ND	ND	ND	ND
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ļ	0.11 1200	23 24000	110 110000	ND ND	ND ND	ND	ND ND
1,2,4-Trichloroberizerie 1,2,4-Trimethylbenzene						ND	ND	ND
1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide)					ND	ND	ND ND	ND
11.2-Dipromoetnane (Etnviene Dipromine)		0.59	4.4	59	ND	ND	ND ND	ND
1,2-Dichlorobenzene							ND	
1,2-Dichlorobenzene 1,2-Dichloroethane		0.59 0.53 1000 7	4.4 36 1800000 470	59 160 9400000 2100	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
1,2-Dichlorobenzene		0.59 0.53 1000	4.4 36 1800000	59 160 9400000	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene		0.59 0.53 1000 7 65 6000	4.4 36 1800000 470 1000	59 160 9400000 2100 4400 	ND	ND	ND	ND
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene)		0.59 0.53 1000 7 65	4.4 36 1800000 470 1000	59 160 9400000 2100 4400	ND ND ND ND ND	ND ND ND ND ND	ND	ND ND ND ND ND
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4 - Dioxane		0.59 0.53 1000 7 65 6000 17 200 0.17	4.4 36 1800000 470 1000 100 2600 812290	59 160 9400000 2100 4400 300 12000 4541690	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene		0.59 0.53 1000 7 65 6000 17 200	4.4 36 1800000 470 1000 100 2600	59 160 9400000 2100 4400 300 12000	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4 - Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene		0.59 0.53 1000 7 65 6000 17 200 0.17	4.4 36 1800000 470 1000 100 2600 812290	59 160 9400000 2100 4400 300 12000 4541690	ND N	ND N	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4 - Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK)		0.59 0.53 1000 7 65 6000 17 200 0.17	4.4 36 1800000 470 1000 100 2600 812290	59 160 9400000 2100 4400 300 12000 4541690 	ND N	ND N	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone		0.59 0.53 1000 7 65 6000 17 200 0.17 920	4.4 36 1800000 470 1000 100 2600 812290 61,000,000	59 160 9400000 2100 4400 300 12000 4541690 670,000,000	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichloropropene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromochloromethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4 - Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM)		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichloropropene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromochloromethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000	ND N	ND N	ND N	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4 - Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000	ND N	ND N	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000	ND N	ND N	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4- Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorobenzene		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000	ND N	ND N	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000	ND N	ND	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4- Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Chlorobenzene Chloroethane Chloroform Chloroethane Chloroform Chloromethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000	ND N	ND N	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000	ND N	ND	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cymene Dibromochloromethane (DBCM)		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 350	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000 8300	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000	ND N	ND	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cymene Dibromochloromethane (DBCM) Dibromomethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000	ND N	ND N	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chloroform Chloroform Chloromethane Cis-1,2-Dichloropthene cis-1,3-Dichloropropene Cymene Dibromochloromethane Dichlorodifluoromethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 350	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000 8300 8300 8300	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 399000 399000 39000	ND N	ND	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromodichloromethane Bromodinomethane (BDCM) Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chloroform Chloroform Chloromethane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cymene Dibromochloromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Di-isopropyl ether (DIPE) Ethyl Tert-Butyl Ether (ETBE)		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 350 350	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000 8300 8300	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000 39000	ND N	ND	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chloroform Chloroform Chloromethane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cymene Dibromochloromethane Dichlorodifluoromethane		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 350 430	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 1400000 320 110000 19000 8300 8300 5900	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000 26000	ND N	ND	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chlorotenee Cis-1,3-Dichloropropene Cymene Dibromochloromethane (DBCM) Dibromomethane Di-isopropyl ether (DIPE) Ethyl Tert-Butyl Ether (ETBE) Ethylbenzene Freon 113 Hexachlorobutadiene		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 350 430 28	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 1400000 320 110000 19000 8300 8300 5900 1200	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000 26000 5300	ND	ND	ND	ND N
1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cis-1,3-Dichloropropene Cymene Dibromomethane Dichloromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Di-isopropyl ether (DIPE) Ethyl Tert-Butyl Ether (ETBE) Ethylbenzene Freon 113		0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 350 430	4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 1400000 320 110000 19000 8300 8300 5900	59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000 26000	ND N	ND	ND	ND

m,p-Xylene	-			ND	ND	ND	ND
Methyl Ethyl Ketone (2- Butanone)	6100	27000000	20000000	ND	ND	ND	ND
Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	360	34000000	140000000	ND	ND	ND	ND
Methylene chloride	120	1900	25000	ND	ND	ND	ND
Methly mercury	34	6320	82070	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	28	15621960	65612250	ND	ND	ND	ND
Naphthalene	42	3800	17000	ND	ND	ND	ND
n-Butylbenzene				ND	ND	ND	ND
n-Propylbenzene				ND	ND	ND	ND
o-Xylene (1,2- Dimethylbenzene)				ND	ND	ND	ND
sec-Butyl Benzene				ND	ND	ND	ND
Styrene	920	5700000	33000000	ND	ND	ND	ND
tert-Butylbenzene				ND	ND ND	ND ND	ND
tert-Butyl alcohol	75 28	47000	210000	ND ND	ND ND	ND ND	ND ND
tert-Butyl Methyl Ether Tetrachloroethene (PCE)	80	590	2700	ND ND	ND ND	ND ND	ND ND
p-Isopropyltoluene				ND ND	ND ND	8.2	ND
tert-Amyl methyl ether (TAME)				ND ND	ND ND	ND	ND ND
Trichloroethene	1200	4160	18940	ND	ND ND	ND	ND
Toluene	3200	1100000	5300000	ND	ND	2	ND
Xylenes (Total)	2100	580000	2500000	ND	ND	ND	ND
Trans-1,2-Dichloroethene (trans-1,2-DCE)	650	130000	600000	ND	ND	ND	ND
Trans-1,3-Dichloropropene (trans-1,3-DCP)				ND	ND	ND	ND
Trichloroethylene (TCE)	85	950	6100	ND	ND	ND	ND
Trichlorofluoromethane				ND	ND	ND	ND
Vinyl Chloride	1.5	8.3	150	ND	ND	ND	ND
PAHs 8270C-SIM ug/kg							
1-Methylnaphthalene				ND	ND	29	ND
2-Methylnaphthalene	880	240000	3013780	ND	ND	31	ND
Naphthalene	42	3800	584540	ND	ND	23	ND
Acenaphthylene	64000			ND	ND	ND	ND
Acenaphthene	12000	3600000	45206720	ND	ND	ND	ND
Fluorene	6000	2400000	30137810	ND	ND	ND	ND
Phenanthrene	7800			ND	ND	17	ND
Anthracene	1900	18000000	226033600	ND	ND	4.2	ND
Fluoranthene	690	2400000	30137810	ND	ND	9	ND
Pyrene	45000	1800000	22603360	ND	ND	10	ND
Benz[a]anthracene	630	1100	20000	ND	ND	3.8	ND
Chrysene		1100		ND	3.2	8	ND
Benzo[b]fluoranthene	1100	1100		ND	4.6	9.2	1.9
Benzo[a]pyrene	110	110	2100	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	480	1100		ND	ND	3.5	ND
Dibenz[a,h]anthracene	110	110		ND	ND	43	ND
Benzo[g,h,i]perylene	2500			ND	5.5	ND	2.8
PAH, Total				ND	ND	8.5	ND
Asbestos %							
CARB 435A				-	-	ND	ND

ND = Non-Detect
-- = Value not established
- = Not tested
STLC Required
TCLP Required
* Values highlighted indicate an exceedance for corresponding screening levels.

Project Name: MST Soil - Roundabout
Project Address: Marina through Sand City, CA

Lab Report #: 506595 **Sample Date**: 4/16/2024

License #22	ReGen STLC	Tier 1 2019	Residential 2019	Commercial 2019	RA 1-3	RA 2-4	RA 3-1	RA 4-2
Metals 6010B mg/kg	Trigger mg/kg	1161 1 2019	Residential 2013	Commercial 2019	IVA 1-5	NA 2-4	IXA 3-1	NA 4-2
Sb - Antimony As - Arsenic	0.6 5	11 0.067	11 0.067	160 0.31	ND 2.4	ND 2	ND 2.3	ND 6.8
Ba - Barium	100	390	15000	220000	9.5	8.3	11	45
Be - Beryllium Cd - Cadmium	0.4 0.5	5 1.9	16 78	230 1100	0.069 0.05	0.078 ND	0.08 0.056	0.13 0.42
Cr - Chromium (Total) Co - Cobalt	5 5	160 23	23	350	10 1.4	4.3 0.61	10 1.4	21 6
Cu - Copper Pb - Lead	200 5	180 32	3100 80	47000 320	0.97 1.3	0.86 0.57	0.99 0.83	45 47
Hg - Mercury (7471B)	0.2	13 6.9	13 390	190 5800	ND ND	ND ND	ND ND	0.05 ND
Mo - Molybdenum Ni - Nickel	10	86	820	11000	7.1	3.7	6.9	19
Se - Selenium Ag - Silver	5	2.4 25	390 390	5800 5800	ND ND	ND ND	ND ND	ND ND
TI - Thallium V - Vanadium	0.05	0.78 18	0.78 390	12 5800	ND 9.2	ND 4.3	ND 10	ND 37
Zn - Zinc TPH 8260TPH mg/kg	2000	340	23000	350000	8.2	3.6	6.7	96
TPHg		100	430	2000	ND	ND	ND	ND
TPH 8015B mg/kg TPHd		260	260	1200	ND	ND	ND	8.1
TPHmo Pesticides 8081B ug/kg		1600	12000	200000	ND	4.3	ND	6.1
Alpha BHC (Alpha Hexachlorocyclohexane) Beta Bhc (Beta Hexachlorocyclohexane)					ND ND	ND ND	ND ND	ND ND
Delta Bhc (Delta Hexachlorocyclohexane)					ND	ND	ND	ND
Gamma Bhc (Lindane) Heptachlor		7.4 120	550 120	25000 530	ND ND	ND ND	ND ND	ND ND
Aldrin Heptachlor Epoxide		2.4 0.18	35 620	150 280	ND ND	ND ND	ND ND	ND ND
Endosulfan I Dieldrin		9.8 0.46	419510 37	5783990 160	ND ND	ND ND	ND ND	ND ND
4,4-DDE		330	1800	8300	ND	ND	ND ND	ND
Endrin Endosulfan II		1.1	21000 419510	290000 5783990	ND ND	ND ND	ND	ND ND
Endosulfan Sulfate 4,4-DDD		 2700	 2700	 12000	ND ND	ND ND	ND ND	ND ND
Endrin Aldehyde Endrin Ketone					ND ND	ND ND	ND ND	ND ND
4,4-DDT		1.1 13	1900 350000	8500 4800000	ND ND	ND ND	ND ND	ND ND
Methoxychlor Toxaphene		510	510	2200	ND	ND	ND	ND
Chlordane PCBs 8082A ug/kg		8.5	480	2200	ND	ND	ND	ND
Aroclor1016 Aroclor1221		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND
Aroclor1232 Aroclor1242		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND
Aroclor1248		230	230	230	ND	ND	ND	ND
Aroclor1254 Aroclor1260		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND
Aroclor1262 Aroclor1268		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND
Total PCBs		230	230	940	ND	ND	ND	ND
IVOCs 8260B ug/kg								
VOCs 8260B ug/kg 1,1,1,2-Tetrachloroethane		17	2000	8900 7300000	ND ND	ND ND	ND ND	ND ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		7000 18	1700000 610	7300000 2700	ND ND	ND ND	ND ND	ND ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloroethane		7000 18 76	1700000 610 1200	7300000 2700 5100	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane		7000 18 	1700000 610 	7300000 2700 	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene		7000 18 76 200	1700000 610 1200 3600	7300000 2700 5100 16000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		7000 18 76 200 540 0.11	1700000 610 1200 3600 83000 23	7300000 2700 5100 16000 350000 110	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		7000 18 76 200 540 0.11 1200	1700000 610 1200 3600 83000 23 24000	7300000 2700 5100 16000 350000 110 110000	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene		7000 18 76 200 540 0.11 1200	1700000 610 1200 3600 83000 23 24000	7300000 2700 5100 16000 350000 110 110000	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane		7000 18 76 200 540 0.11 1200 0.59	1700000 610 1200 3600 83000 23 24000 4.4	7300000 2700 5100 16000 350000 110 110000 59	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroptopane 1,3-5-Trimethylbenzene 1,3-5-Trimethylbenzene 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichloropropene 1,4-Dichloropropene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-dhane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichloropropene 1,4-Dichlorobenzene 1,4-Dichlorobenzene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Diokane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK)		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690	ND N	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000	ND	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroptopane 1,3-5-Trimethylbenzene 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichloropropane 1,4-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690	ND	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroptopane 1,3-5-Trimethylbenzene 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400	ND	ND N	ND N	ND
1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trimethylbenzene (Mesitylene) 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane (BDCM)		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000	ND	ND N	ND N	ND N
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Butane, 2-Methoxy-2- Methyl		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 44400 300 12000 4541690 670,000,000 1400 1300 80000 30000	ND	ND N	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Diohlorobenzene 1,4-Diohloropropane (2,2-DCP) 2-Butanone 2-C-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromochoromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 44400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700	ND	ND N	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromodenloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900	7300000 2700 5100 16000 350000 110 110000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000	ND	ND N	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichloropropane 1,4-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Chloromethane Chloroform Chloromethane Chloromethane Chloromethane Chloroform Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Trimethylbenzene (Mesitylene) 1,3-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromochloromethane Bromodichloromethane (BDCM) Bromoform Bromomethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodenae Chlorobenzene Chlorobenzene Chlorobenzene Chloroform Chloromethane cis-1,2-Dichloropropene Cymene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 44400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromochloromethane Bromochloromethane Bromodichloromethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cis-1,2-Dichloropropene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dioxane 2,2-Dichloropropane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromochloromethane Bromochloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromodichloromethane Bromochloromethane Chloroethane Chloroethane Chloroform Chloromethane Chloromethane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cymene Dibromochloromethane (DBCM)		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 16 690 360 76 1400 1200 23 111000 190 350	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 19000 8300	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 44400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Chlorotoluene 2-Chlorotoluene 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromobenzene Bromodichloromethane (BDCM) Bromoform Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Chloroform Chloromethane Cis-1,3-Dichloropropene Cymene Dibromochloromethane (DBCM) Dibromomethane Di-isopropyl ether (DIPE) Ethyl Tert-Butyl Ether (ETBE)		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000 8300 8300	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000 39000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropene 1,4-Dichlorobenzene 1,4-Diokane 2,2-Dichlorobenzene 1,4-Diokane 2,2-Dichlorobenzene 1,4-Diokane 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromothoromethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorothane Chloroform Chloromethane cis-1,2-Dichloropropene Cymene Dibromochloromethane Dichloropropene Cymene Dibromochloromethane Dichlorodifluoromethane		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 350 430	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000 8300 5900 5900	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000 26000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Triichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Triichlorobenzene 1,2,4-Triichlorobenzene 1,2,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,3-5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromodenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide Chlorobenzene Chloroform Chloroform Chloromethane Chloroform Chloromethane Chloroform Chloromethane Dichlorodifloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromomethane Dichlorodifluoromethane		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 190 430	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000 8300 5900	7300000 2700 5100 16000 350000 110 110000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 26000	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3- Chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Bromoform Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Ibisulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Chloroform Chloromethane Disipropyl ether (DIPE) Ethyl Tert-Butyl Ether (ETBE) Ethylbenzene Freon 113 Hexachlorobutadiene Isopropyl Ether		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 16 690 360 1400 1200 23 11000 190 430 28	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 290 18000 6900 620 270,000 14000000 320 110000 19000 5900 5900 5900 1200	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 4400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 26000 5300	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2-Dibromo-3- Chloropropane 1,2-Dibromo-3- Chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dioxane 2,2-Dichloropropane 1,4-Dioxane 2,2-Dichloropropane (2,2-DCP) 2-Butanone 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene Acetone Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Chloroform Chloropethane Chloroform Chloromethane Chloroform Chloromethane Di-isopropyl ether (DIPE) Ethyl Tert-Butyl Ether (ETBE) Ethylbenzene Freon 113 Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene		7000 18 76 200 540 0.11 1200 0.59 0.53 1000 7 65 6000 17 200 0.17 920 25 16 690 360 76 1400 1200 23 11000 23 11000 23 11000 190 430 430 430 430	1700000 610 1200 3600 83000 23 24000 4.4 36 1800000 470 1000 100 2600 812290 61,000,000 330 620 270,000 14000000 320 110000 19000 8300 8300 5900 5900 1200 1800	7300000 2700 5100 16000 350000 110 110000 59 160 9400000 2100 44400 300 12000 4541690 670,000,000 1400 1300 80000 30000 2700 1300000 59000000 1400 470000 85000 39000 26000 26000 5300 7800	ND	ND	ND	ND

Methylene chloride]	120	1900	25000	ND	ND	ND	ND
Methly mercury		34	6320	82070	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)		28	15621960	65612250	ND	ND	ND	ND
Naphthalene		42	3800	17000	ND	ND	ND	ND
n-Butylbenzene					ND	ND	ND	ND
n-Propylbenzene					ND	ND	ND	ND
o-Xylene (1,2- Dimethylbenzene)			-		ND	ND	ND	ND
sec-Butyl Benzene		-	-		ND	ND	ND	ND
Styrene		920	5700000	33000000	ND	ND	ND	ND
tert-Butylbenzene					ND	ND	ND	ND
tert-Butyl alcohol		75			ND	ND	ND	ND
tert-Butyl Methyl Ether		28	47000	210000	ND	ND	ND	ND
Tetrachloroethene (PCE)		80	590	2700	ND	ND	ND	ND
p-Isopropyltoluene		-	-		ND ND	ND ND	ND ND	ND
tert-Amyl methyl ether (TAME)		4200	4460		ND ND	ND ND	ND ND	ND ND
Trichloroethene		1200 3200	4160 1100000	18940 5300000	ND ND	ND ND	ND ND	ND ND
Toluene		2100	580000	2500000	ND ND	ND ND	ND ND	ND ND
Xylenes (Total)	 							
Trans-1,2-Dichloroethene (trans-1,2-DCE) Trans-1,3-Dichloropropene (trans-1,3-DCP)		650	130000	600000	ND ND	ND ND	ND ND	ND ND
Trichloroethylene (TCE)		 85	950	6100	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane			950		ND ND	ND ND	ND ND	ND ND
Vinyl Chloride		1.5	8.3	150	ND ND	ND ND	ND ND	ND ND
PAHs 8270C-SIM ug/kg		1.0	0.0	130	ND	ND	ND	ND
1-Methylnaphthalene				-	4.2	ND	ND	ND
2-Methylnaphthalene		880	240000	3013780	5.5	ND	ND	10
Naphthalene		42	3800	584540	N	ND	ND	ND
Acenaphthylene		64000	-		2.6	ND	ND	ND
Acenaphthene		12000	3600000	45206720	5.6	ND	ND	ND
Fluorene		6000	2400000	30137810	7.4	ND	ND	ND
Phenanthrene		7800			5.4	ND	ND	64
Anthracene		1900	18000000	226033600	6	ND	ND	9.7
Fluoranthene		690	2400000	30137810	ND	ND	ND	35
Pyrene		45000	1800000	22603360	ND	ND	ND	54
Benz[a]anthracene		630	1100	20000	ND	ND	ND	36
Chrysene			1100		ND	ND	ND	77
Benzo[b]fluoranthene		1100	1100		ND	ND	ND	36
Benzo[a]pyrene		110	110	2100	ND	ND	ND	11
Indeno[1,2,3-cd]pyrene		480	1100		ND	ND	ND	28
Dibenz[a,h]anthracene		110	110		ND	ND	ND	17
Benzo[g,h,i]perylene		2500			ND	ND	ND	ND
PAH, Total		-	-		ND	ND	ND	24
Asbestos %								
CARB 435A	1			T	ND	1		

ND = Non-Detect
-- = Value not established
- = Not tested
STLC Required
TCLP Required
* Values highlighted indicate an exceedance for corresponding screening levels.

Project Name: MST Soil - Playa California
Project Address: Marina through Sand City, CA

Lab Report #: 506595 **Sample Date**: 4/16/2024

License #22	ReGen STLC Trigger mg/kg	Tier 1 2019	Residential 2019	Commercial 2019	PC 1-3.5	PC 2-1.5	PC 3-2	PC 4-0.5	PC 5-1
Metals 6010B mg/kg Sb - Antimony	0.6	11	11	160	ND	ND	ND	ND	ND
As - Arsenic Ba - Barium	5 100	0.067 390	0.067 15000	0.31 220000	2.7 42	2.7 34	2 24	2.2 19	3.3 18
Be - Beryllium Cd - Cadmium	0.4 0.5	5 1.9	16 78	230 1100	0.21 0.056	0.17 0.13	0.1 0.17	0.089 0.19	0.1 0.15
Cr - Chromium (Total) Co - Cobalt	5 5	160 23	23	- 350	12 2	13 2.1	7.9 2.6	8.3 2	8.5 1.7
Cu - Copper Pb - Lead	200 5	180 32	3100 80	47000 320	1.5	11 26	58 14	74 18	6.2 19
Hg - Mercury (7471B) Mo - Molybdenum	0.2	13 6.9	13 390	190 5800	ND ND	ND ND	ND ND	ND ND	ND ND
Ni - Nickel Se - Selenium	10	86 2.4	820 390	11000 5800	9.3 ND	8.6 ND	5.7 ND	6 ND	7.8 ND
Ag - Silver TI - Thallium V - Vanadium	5 0.05 2	25 0.78	390 0.78 390	5800 12 5800	ND ND 13	ND ND 17	ND ND	ND ND	ND ND 9.9
Zn - Zinc	2000	18 340	23000	350000	9.9	32	15 24	16 32	40
TPH 8260TPH mg/kg TPHg TPH 8015B mg/kg		100	430	2000	ND	ND	ND	57	ND
TPHd TPHmo		260 1600	260 12000	1200 200000	ND ND	4.1 4.1	ND ND	180 410	63 120
Pesticides 8081B ug/kg Alpha BHC (Alpha Hexachlorocyclohexane)					ND	ND	ND	ND	ND ND
Beta Bhc (Beta Hexachlorocyclohexane) Delta Bhc (Delta Hexachlorocyclohexane)					ND ND	ND ND	ND ND	ND ND	ND ND
Gamma Bhc (Lindane) Heptachlor		7.4 120	550 120	25000 530	ND ND	ND ND	ND ND	ND ND	ND ND
Aldrin Heptachlor Epoxide		2.4 0.18	35 620	150 280	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan I Dieldrin		9.8 0.46	419510 37	5783990 160	ND ND	ND ND	ND ND	ND 2.1	ND ND
4,4-DDE Endrin		330 1.1	1800 21000	8300 290000	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan II Endosulfan Sulfate			419510 	5783990 	ND ND	ND ND	ND ND	ND ND	ND ND
4,4-DDD Endrin Aldehyde		2700	2700	12000	ND ND	ND ND	ND ND	ND ND	ND ND
Endrin Ketone 4,4-DDT		1.1	1900	8500 4800000	ND ND	ND 4.3	ND ND	ND 3.1	ND ND
Methoxychlor Toxaphene Chlordane		13 510 8.5	350000 510 480	4800000 2200 2300	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Chlordane PCBs 8082A ug/kg Aroclor1016	1	230	230	2200	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor1221 Aroclor1232		230 230 230	230 230 230	230 230 230	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor1242 Aroclor1248		230 230	230 230 230	230 230 230	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor1254 Aroclor1260		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor1262 Aroclor1268		230 230	230 230	230 230	ND ND	ND ND	ND ND	ND ND	ND ND
Total PCBs VOCs 8260B ug/kg		230	230	940	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		17 7000	2000 1700000	8900 7300000	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2- Trifluoroethane		18 	610	2700	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane 1,1-Dichloroethane		76 200	1200 3600	5100 16000	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethene 1,1-Dichloropropene		540 	83000	350000	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		0.11	23	110	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		1200	24000	110000 59	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2-Dibromo-3- Chloropropane 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene		0.59 0.53 1000	4.4 36 1800000	160 9400000	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropethane 1,2-Dichloropropane		7 65	470 1000	2100 4400	ND ND	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene		 6000			ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichloropropene 1,4-Dichlorobenzene		17 200	100 2600	300 12000	ND ND	ND ND	ND ND	ND ND	ND ND
1,4 - Dioxane 2,2-Dichloropropane (2,2-DCP)		0.17	812290 	4541690 	ND ND	ND ND	ND ND	ND ND	ND ND
2-Butanone 2-Chlorotoluene					ND ND	7.3 ND	ND ND	ND ND	ND ND
2-Hexanone (MBK) 4-Chlorotoluene					ND ND	ND ND	ND ND	ND ND	ND ND
Acetone Benzene		920 25	61,000,000 330	670,000,000 1400	ND ND	71 ND	ND ND	66 ND	ND ND
Bromobenzene Bromochloromethane					ND ND	ND ND	ND ND	ND ND	ND ND
Bromodichloromethane (BDCM) Bromoform		16 690	290 18000	1300 80000	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane Butane, 2-Methoxy-2- Methyl Carbon Disulfide		360 	6900 	30000	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Carbon Disumde Carbon tetrachloride Chlorobenzene		76 1400	620 270,000	2700 1300000	ND ND	ND ND	ND ND	ND ND ND	ND ND ND
Chloroethane Chloroform		1200 23	14000000 320	5900000 1400	ND ND	ND ND	ND ND	ND ND	ND ND ND
Chloromethane cis-1,2-Dichloroethene		11000 190	110000 19000	470000 85000	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene Cymene					ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane (DBCM) Dibromomethane		350 	8300 	39000 	ND ND	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane Di-isopropyl ether (DIPE)					ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert-Butyl Ether (ETBE) Ethylbenzene		430	 5900	 26000	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 113 Hexachlorobutadiene		 28	1200	5300	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachloroethane Isopropyl Ether		19	1800	7800	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene (Cumene) m,p-Xylene Methyl Ethyl Ketone (2- Butanone)		 6100	 27000000	 200000000	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Methyl Letnyl Ketone (2- Butanone) Methyl Isobutyl Ketone (4- Methyl-2-Pentanone) Methylene chloride		360 120	3400000 1900	140000000 25000	ND ND	ND ND	ND ND	ND ND ND	ND ND ND
Methly mercury Methyl tert-butyl ether (MTBE)		34 28	6320 15621960	82070 65612250	ND ND	ND ND	ND ND	ND ND	ND ND
Naphthalene n-Butylbenzene		42	3800	17000	ND ND	ND ND	ND ND	ND ND	ND ND
n-Propylbenzene o-Xylene (1,2- Dimethylbenzene)					ND ND	ND ND	ND ND	ND ND	ND ND
sec-Butyl Benzene Styrene		 920	 5700000	 33000000	ND ND	ND ND	ND ND	ND ND	ND ND
tert-Butylbenzene tert-Butyl alcohol		 75			ND ND	ND ND	ND ND	ND ND	ND ND
tert-Butyl Methyl Ether Tetrachloroethene (PCE)		28 80	47000 590	210000 2700	ND ND	ND ND	ND ND	ND ND	ND ND
p-Isopropyltoluene tert-Amyl methyl ether (TAME)					ND ND	1.7 ND	ND ND	2.5 ND	ND ND
Trichloroethene Toluene		1200 3200	4160 1100000	18940 5300000	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total)		2100	580000	2500000	ND	ND	ND	ND	ND

Trans-1,2-Dichloroethene (trans-1,2-DCE)	650	130000	600000	ND	ND	ND	ND	ND
Trans-1,3-Dichloropropene (trans-1,3-DCP)				ND	ND	ND	ND	ND
Trichloroethylene (TCE)	85	950	6100	ND	ND	ND	ND	ND
Trichlorofluoromethane	-			ND	ND	ND	ND	ND
Vinyl Chloride	1.5	8.3	150	ND	ND	ND	ND	ND
PAHs 8270C-SIM ug/kg								
1-Methylnaphthalene	-			ND	ND	ND	ND	ND
2-Methylnaphthalene	880	240000	3013780	ND	ND	ND	ND	ND
Naphthalene	42	3800	584540	ND	ND	ND	ND	ND
Acenaphthylene	64000			ND	ND	ND	ND	ND
Acenaphthene	12000	3600000	45206720	ND	ND	ND	ND	ND
Fluorene	6000	2400000	30137810	ND	ND	ND	ND	ND
Phenanthrene	7800			ND	7.3	3	ND	ND
Anthracene	1900	18000000	226033600	ND	1.5	3.5	ND	ND
Fluoranthene	690	2400000	30137810	ND	9.6	7.6	ND	ND
Pyrene	45000	1800000	22603360	ND	9.4	6.7	ND	ND
Benz[a]anthracene	630	1100	20000	ND	4	2.9	ND	ND
Chrysene		1100		ND	6.3	5	ND	ND
Benzo[b]fluoranthene	1100	1100		ND	7.4	8.7	ND	ND
Benzo[a]pyrene	110	110	2100	ND	2.9	2.9	ND	ND
Indeno[1,2,3-cd]pyrene	480	1100		ND	4.4	3.7	ND	ND
Dibenz[a,h]anthracene	110	110		ND	4.5	4.3	ND	ND
Benzo[g,h,i]perylene	2500			ND	ND	ND	ND	ND
PAH, Total				ND	7.1	5.1	ND	ND
Asbestos %								
CARB 435A		-		-	ND	ND	-	ND

ND = Non-Detect
-- = Value not established
-= Not tested
STLC Required
TCLP Required
* Values highlighted indicate an exceedance for corresponding screening levels.

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 506595

Report Level : II

Report Date : 04/29/2024

Analytical Report prepared for:

Lisa Prasad Graniterock 350 Technology Dr Watsonville, CA 95076

Project: 8133 - MST

Authorized for release by:

Miguel Gamboa, Project Coordinator miguel.gamboa@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Lisa Prasad
Graniterock
Graniterock
350 Technology Dr
Watsonville, CA
95076

Lab Job #: 506595
R133
Location: MST
Date Received: 04/17/24

Sample ID	Lab ID	Collected	Matrix
MS1-4	506595-001	04/16/24 16:01	Soil
MS2-1	506595-002	04/16/24 15:45	Soil
MS3-2	506595-003	04/16/24 15:22	Soil
MS4-0.5	506595-004	04/16/24 15:31	Soil
RA 1-3	506595-005	04/16/24 12:28	Soil
RA 2-4	506595-006	04/16/24 11:55	Soil
RA 3-1	506595-007	04/16/24 12:02	Soil
RA 4-2	506595-008	04/16/24 12:13	Soil
PC 1-3.5	506595-009	04/16/24 10:15	Soil
PC 2-1.5	506595-010	04/16/24 10:27	Soil
PC 3-2	506595-011	04/16/24 10:43	Soil
PC 4-0.5	506595-012	04/16/24 10:50	Soil
PC 5-1	506595-013	04/16/24 11:30	Soil

Case Narrative

Graniterock 350 Technology Dr Watsonville, CA 95076 Lisa Prasad

Number:
Project No: 8133
Location: MST
Date Received: 04/17/24

Lab Job 506595

This data package contains sample and QC results for thirteen soil samples, requested for the above referenced project on 04/17/24. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015M):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

- Low recovery was observed for chlorobenzene in the MSD for batch 338690; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPD was within limits.
- No other analytical problems were encountered.

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM):

- High responses were observed for benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene in the CCV analyzed 04/24/24
 13:39; these analytes were not detected at or above the RL in the associated samples, and affected data was qualified with "b".
- High RPD was observed for a number of analytes in the MS/MSD of RA 4-2 (lab # 506595-008).
- High surrogate recovery was observed for nitrobenzene-d5 in PC 4-0.5 (lab # 506595-012); no target analytes were detected in the sample.
- Many samples were diluted due to the dark and viscous nature of the sample extracts.
- · No other analytical problems were encountered.

Pesticides (EPA 8081A):

No analytical problems were encountered.

PCBs (EPA 8082):

No analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

- Low recoveries were observed for antimony in the MS/MSD of MS1-4 (lab # 506595-001); the LCS was within limits, and the associated RPD was within limits.
- Beryllium was detected between the MDL and the RL in the method blank for batch 338281; this analyte was not detected in samples at or above the RL.
- No other analytical problems were encountered.

Moisture (ASTM D2216):

No analytical problems were encountered.

Asbestos (CARB 435):

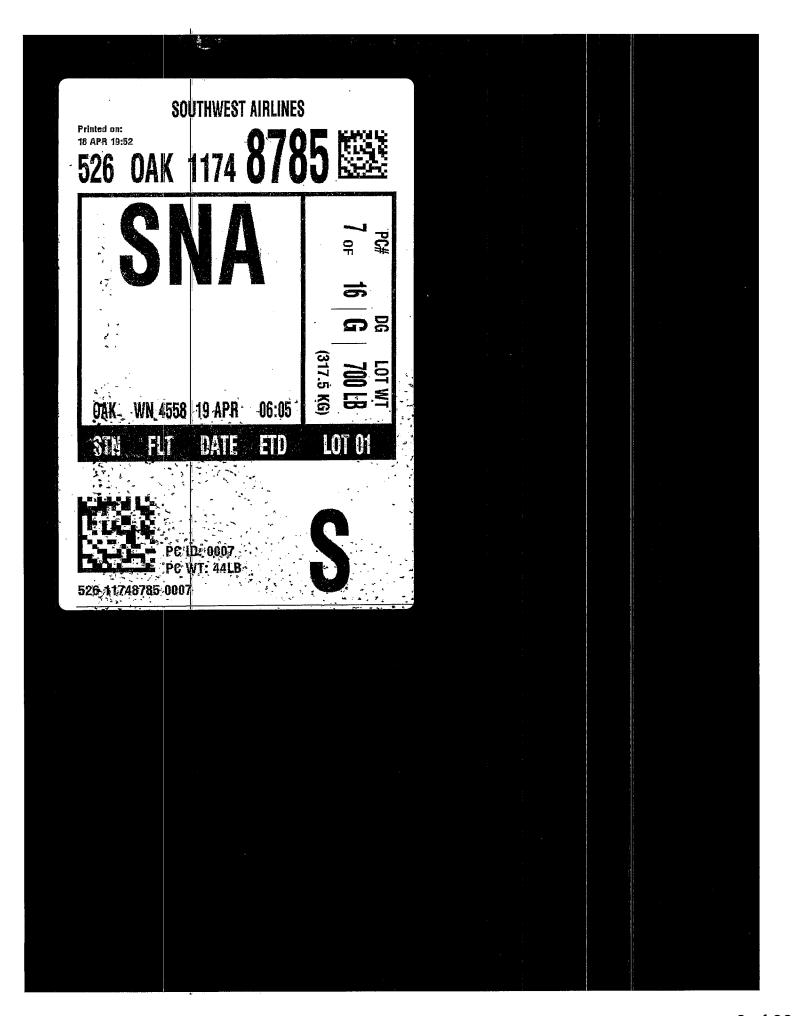
SGS Forensic in Hayward, CA performed the analysis (see sublab report section for certifications). Please see the SGS Forensic case narrative.

of 2 2 Day: 1 Day: Custom TAT:	A = Air S = Soil/Solid Preservatives: Sample Receipt Temp;	= Sediment $1 = Na_2 S_2 O_3 2 = HCI 3 = HNO_3$ Vater $4 = H_2 SO_4 5 = NaOH 6 = Other$	O = Other (lat	Analysis Request Test Instructions / Comments	Please				nd ni		ləy) %											Date / Time		1		17.24 17.2	18.24 (1:4d	119 124 1007AM
2 2 Day: 1 Day:		$1 = Na_2S_2O_3$ 2 = HCl $4 = H_2SO_4$ 5 = NaOH							n Dr		ləн) %											Dat	7.24	12/21	17/24	17.24		119 /
2 2 Day:				Analysis Request					in Dr		ləਸ਼) %			<u> </u>				1			1	1	17	1	12/	r *		
7				Analysis Request					ni Dr		lə _В) %					 		\dashv	+-	+	╁-	┢	→		-	4	4.(8	7
7	Air S = Soil/Solid			Analysis Request		(7:	308/	1808		C 5- 17) sotsədə 	4~						,	-	₹.	ĺ	SPM					
7	Air S = Soil/Solid	Vate SD = Sediment A = Sea Water		Analysis Red		(28	308/	1808				elorisil Cle	_/_	+	X				+	+	×	Tjtle	53					ı
7	Air S = Soil/Solid	Vate SD = Sedimen A = Sea Water		Analy								CP (Pest	- 							E		_	7)1	70	-	
	Air S = Soil/Solid	Vate SD = Se A = Sea Wate							VVI	S VIV	Id / H	70Cs 200C - PA	\							=	呂	Company	3	+CID's		Q/6	3	
	Air S = Soil,	Vate : A = Se	₹		H	(OAI	N/O	1 a) H				PH (DRO	15									O	Gariska of	ENTHALDY		Ę	thal	(A)
o	Air S		WP = Wipe) VI MAC	1					_			S		77	n	>	Ψ,	U	ı
		nking V ict SE										Pres.																\exists
	Matrix: A =	Vater DW = Drinkir PP = Pure Product	SW = Swab T = Tissue	OJECT INFORMATION		į		į				Container No. / Size	1602 Voda	7						\	>	Print Name	mse	HUBSALL	>	eBon	150m	QUI TUGUA
ge:		N ≡	SW=	NFOR	+	33						ri,					_	-	-			Print	600		, ,	画	200	3
Page:			4	ECT	Z	18						Matrix	3	6		*	\leq	#	1		2		مئن	MONEY	\	3	Ñ,	25/2/2
				PROJ) 1e:	nber:	#	ress:		al ID:	pled By:	Sampling Time	6.0	15:45	12:21	15:31	17:28	11:53	12:13	10:15	12:01		-37	Am	3			155
r .	ey	-	ŀ		Nan	Nun	P.O.	Add	ļ	99	Sam	91	*											1				
-	erkel	4 94710										Samplii Date	9	4		X	\perp				\downarrow	ture	,	1800	Sold Br)	NL	1/2
<u></u>	al - B	eley, C	0060-9	z			mo						بخ			1	\downarrow	_	_			Signa		Sheep				ant
< │	alytic	t, Berke	510-48	ATIO			rock.		9												ı	(P		3	龙	*		7
	y Ana	h Stree	Phone	J S 			ranite	ıy Dr.	A 9507													4	W.	all i	Luga	Œ		*
	thalp	323 5tl		EK N	rock	ısad	3d@g	shnolog	ville, C.	3-2000		e ID				N/					الر	+	-	12	7	\dashv	+	+
[-	ᇤ	7		S O S	Granite	Lisa Pra	Lpras	350 Te	Watsor	831-76		Sampl	チー	<u>, </u>	2	<u>ر</u> ا	N	1 1	- 2	3,5	긤		By:		By:		By:	
)					трапу:	ort To:	ilt:						M51.	MS 2	ام	ر ا			12		220		nduished	eived By:	inquished	ceived By:	inquished	Received by:
		Enthalpy Analytical - Berkeley	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900	Enti 233 CUSTOME	Entl 233 CUSTOME	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 CUSTOMER INFORMATION Company: Graniterock Name: Report To: Lisa Prasad Number:	Entl 233 CUSTOME Granitero Lisa Prass Lisa Prass	Enth 233 CUSTOME ny: Granitero To: Lisa Prass Lprasad s: 350 Techn	Entl 23, 23, CUSTOME 7: Granitero 0: Lisa Prasa 350 Tech Watsonvi	Entt 233 CUSTOME Granitero i Lisa Prass Lisa Prass 350 Tech Watsonvi 831-768-7	Enth 23, 23, CUSTOME To: Granitero To: Lisa Prase Liprasad S: 350 Tech Watsonvi 831-768-;	Enth 23, 23, 70, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	Entt 23. 23. 24. CUSTOME NY: Granitero Lisa Prass Lisa Prass Lisa Prass Lisa Prass Sample I Sample I Sample I Sample I	Entt CUSTOME To: Lisa Prass Lisa Prass Si: 350 Techn Watsonvi 831-768-7 A\$ 2 - 1	Entt CUSTOME To: Lisa Prase Lisa Prase Si: 350 Techn Watsonvi 831-768-7 AS 2 - 1 AS 2 - 2	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 CUSTOMER INFORMATION Num To: Lisa Prasad Lisa Prasad Lisa Prasad Watsonville, CA 95076 831-768-2000 Sample ID Sampling Sample ID A\$ 2 - 1 A\$ 2 - 1 A\$ 3 - 2 A\$ 4 - 0.5 A\$ 5 - 2 A\$ 4 - 0.5 A\$ 5 - 2 A\$ 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 CUSTOMER INFORMATION Isa Prasad Lprasad@graniterock.com Sample ID Sample ID Sampling A5 2 - 2 A5 4 - 0.5 A 1 - 3	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 CUSTOMER INFORMATION Num To: Lisa Prasad Lisa Prasad Lisa Prasad Watsonville, CA 95076 831-768-2000 Sample ID Sampling Sample ID A 2 - F A 2 - F A 2 - F A 2 - F A 2 - F A 2 - F A 3 2 - F A	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 CUSTOMER INFORMATION Isa Prasad Lisa Prasad Watsonville, CA 95076 831-768-2000 Sample ID Sampling Addit Addit	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 CUSTOMER INFORMATION To: Lisa Prasad Watsonville, CA 95076 831-768-2000 Sample ID Sample ID Sample ID 15 4 - 0.5 A 2 - 4 A 1 - 3 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 7 A 3 - 7 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 7 A 3 - 7 A 3 - 7 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 4 A 2 - 7 A 3 - 7 A 2 - 4 A 2 - 7 A 3 - 7 A 2 - 7 A 2 - 7 A 2 - 7 A 2 - 7 A 2 - 7 A 2 - 7 A 2 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 3 - 7 A 2 - 7 A 3 - 7 A 3 - 7 A 4 - 2 A 5 - 7 A 5 - 7 A 5 - 7 A 7 -	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 CUSTOMER INFORMATION Num To: Lisa Prasad Lisa Prasad Lisa Prasad Lisa Prasad Sample ID Sampling Sample ID A 2 - Y A 2 - Y A 2 - Y A 2 - Y A 2 - Y A 2 - Y A 2 - Y A 3 - C A 4 - C A 4 - C A 4 - C A 4 - C A 4 - C A 4 - C A 4 - C A 5	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 DMER INFORMATION Initerock Prasad Sampling Prasad Technology Dr. Somylle, CA 95076 Technology Dr. Additionally Dr.	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 USTOMER INFORMATION Graniterock Lisa Prasad Lisa Prasad Watsonville, CA 95076 Sample ID Sampling Sample ID Sampling Sample ID Samp	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 USTOMER INFORMATION Graniterock Lisa Prasad Lisa Prasad Watsonville, CA 95076 Sample ID Sa	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 USTOMER INFORMATION Graniterock Lisa Prasad Lisa Prasad Watsonville, CA 95076 Sample ID Sa	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 OMER INFORMATION Initerock Interock Intero	Enthalpy Analytical - Berkeley 2323 5th Street, Berkeley, CA 94710 Phone 510-486-0900 USTOMER INFORMATION Graniterock Lisa Prasad Lisa Prasad Lisa Prasad Sample ID Sampling Sample ID Sampling Sampling Sample ID Sampling Sampling Sample ID Sampling Sampling Sampling Sampling Sample ID Sampling Sampli

			-	•	B (_	_		
		4	Lab No:	クログ	なな	St.	Standard:	X	5 Day:		3 Day:	
			Page:	1	of 2	21	2 Day:		1 Day:		Custom TAT:	
Enthalpy Analytical - Berkeley	- Berkeley			Matrix: A =	A = Air S = Soil/Solid	Solid			Preservatives:	1 22	Sample Receipt Temp:	ot Temp:
2323 5th Street, Berkeley, CA 94710	γ, CA 94710		≡	W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water	inking Wate SD = Sed uct SEA = Sea Water	SD = Sedir	nent	$1 = Na_2$ $4 = H_2SC$	$1 = Na_2 S_2 O_3$ $2 = HCl$ $4 = H_2 SO_4$ $5 = NaOH$: HCl 3 = HNO ₃ aOH 6 = Other	24/15	
Phone 510-486-0900	0060		SW:	SW = Swab T = Tissue	ue WP = Wipe	e O=Other	ther				(lab use only)	(Alr
CUSTOMER INFORMATION		PROJEC	OJECT INFORMATION	MATION		An	Analysis Request	luest		Test Instru	Test Instructions / Comments	ents
Graniterock	Name:		MST							Please also run STLC/TCLP on results over	TLC/TCLP on res	ults over
Lisa Prasad	Nur	Number:	8 133	.~		(OAN	(28			Title 22 10x & 20x trigger levels.	c trigger levels.	
Lprasad@graniterock.com		P.O. #:				n /oa	 108/T		flgiə			
350 Technology Dr.	Adc	Address:				ю) н	:808)		W VI			
Watsonville, CA 95076									0 ni∶			
831-768-2000	<u>G</u>	Global ID:							hode			
	San	Sampled By:							ън) %			
Sample ID	Sampling Date	Sampling Time	Matrix	Container No. / Size	P. CAM 17	Silica Gel	OCP (Pes	Florisil Cl	Moisture			
Pc 3-2	かじょ	(0:43	ヹ゚ゟ゚	bez/troff	<u> </u>		<u> </u>	X	X-			
PC4-0.5	Ł	10:50	k	4			₩.	×				
	7		>									
				Þ								
					₹	>	3					
		-										
	Sig nature			Print Name		Cor	Company /	Title		Ds	Date / Time	
Relinquished By:		L:5a	Pro	>0-d	ソら	agnitused	noch	/SD/	Ş	4.17.24	55,51	,
¹ Received By: Qudgees	Chadren	An	Automen	HURBAN	(3)	BINTHAL	MM			47/1/4	X;31	\
Relinquished By: Gunday &	Ludosa	7	,	М	1		-	۱,		14/14	2/2/ 7	0
² Received By:		(10c)	沪	12[Sm	172	EATho	K			4.17.24	17.	B
³ Relinquished By:		Jool	がしる	2[30A	E	Enthals	<u>,</u> ×			4.18.24	U:19	8
³ Received By:	The state of the s	7.21	BFRT	QUANTELLA		E.A.	_		-	4/19/24	11/201	W

	SAMPLE RECEIPT CHECKLIST			
Section 1: General Info	,			
Date Received: 4.17.24	Login # 506595 Client: Grante Rock		ENT	HALPY
Section 2: Shipping / Custo				
Shipping Info:				Ì
Are custody seals present?	No ☐ Yes If yes, where? ☐ on cooler, ☐ on samples, ☐ on	narkago		
	val? □Yes □ No □ N/A Date: # of seals □ Signi			-
Date Opened 417,24	aging Important: Notify 9M if temperature exceeds by (print) Jagz 616 50 (sign) / M	o coi ai	1146 1102	.211
	ived on ice directly from the field. Cooling process had begun. (if checked, skip			
if no cooler: Sample Temp (sived on ice directly from the field. Cooling process had begun, (if checked, skip	temper	atures)	
Township coolers? 1	Temp (°C): #1: 2.2 #2: #3: #4: #5: #5: #5: # C	#6:_	S il Der	. ,
Temperature measured usi		JJ	411.0	9
Type of ice used: Wet		Yes,	Z No -	-
Section 4: Containers / Lab		YES	NO	N/A
	lled out properly, and the project identifiable?			
	g containers present? Transferred to freezer @:1성:53 4.17.34			
Did all containers arrive unt				
Are there any missing / extr	•			
	ate containers for indicated tests?			
	n good condition and complete?			
Does the container count m				
Do the sample labels agree				
	mple sent for tests requested?			
	ne in LIMS for unpreserved VOAs?			
	e in LIMS for preserved terracores?			
Are bubbles > 6mm present			_	
Was the client contacted at	out this delivery? Contacted: By: Date:			
Section 5: Preservatives		YES	NO	N/A
	ely preserved? (if yes, skip the rest of section 5)			
	s require preservation upon receipt?			
Did you document your pre	servative check in the bench book?			
Preservative added:				
☐ H2SO4 lot#	added to samplesDate/Time			
☐ HCL lot#	added to samplesDate/Time			
☐ HNO3 lot#	added to samplesDate/Time			
☐ CrVI Buffer lot#	added to samples Date/Time	_		
Section 6: Explanations / Co	Extra sample received: PC5-1 4.16.24	11:3	0 ful)	10+
No VOA count on	-7 30 30 TFIC 10 30 TO 10 TO 1	SOBIL		<u> </u>
7 40 W 21 COUNTY 117		OBI V	A.	
	200 1 100 100 1 100 1 100 0 0 0 0 0 0 0	2121 01	7.77	
	-011 MeOH IMA appears to have Princeto	ted it	3 lies	<u>)d</u> ,
	11		- · · · · · · · · · · · · · · · · · · ·	
	ALAN TO E-MAY ALAN			
Date Logged 4.17.2	11 6307			
Date Labeled 17.71/2	9 By (print) 3 add tetel Son (sign)			
•	V // */			
			.,	
	· ·			

Enthalpy Analytical - Berkeley


6 of 88

Rev.15.1, 09/13/2019

SAMPLE ACCEPTANCE CHECKLIST

Section 1	ANITEROUK Project: MST #813:	3		
Client:	Sampler's Name Present:		No	
Section 2	II.			
Sample(s) receive	ed in a cooler? XYes, How many? 1 No (skip section 2)	•	Temp (°C) No Cooler)	
), One from each cooler: #1: 2 .		vo cooler)	
	6°C but not frozen (for Microbiology samples, acceptance range is <10°C but not frozen). It is		for sample	- s collected
the	same day as sample receipt to have a higher temperature as long as there is evidence that cool			
Shipping Informa	tion:		=	
Section 3			<u> </u>	
Was the cooler p	acked with: XIce XIce Packs Bubble Wrap Styrofo	oam		
Cooler Temp (°C)	#1: \.5	#4:		
Section 4		YES	NO	N/A
Was a COC receiv	ved?	-		10.00
Are sample IDs p	resent?	-		4 19 1
	es & times present?	V		25
Is a relinquished	signature present?	~/		
Are the tests req	uired clearly indicated on the COC?	$\overline{\langle}$		
Are custody seals		√ /		early months
	eals are present, were they intact?			
	ealed in plastic bags? (Recommended for Microbiology samples)			
	rive intact? If no, indicate in Section 4 below.	~/	/	100
	els agree with COC? (ID, dates and times) 4/ાગ/૨૫ ડેમ્લ	/	<u> </u>	
	s collected in the correct containers for the required tests?		· · ·	
	tainers labeled with the correct preservatives?	~+		
	ce in the VOA vials greater than 5-6 mm in diameter?			
was a sufficient a	amount of sample submitted for the requested tests?	<u> </u>		
Section 5 Expla	nations/Comments			
CEE DEO	KELEY COOLER SHEET			Ę
JUE DEK	rue, moler sheel			1
Section 6				
	, how was the Project Manager notified? Verbal PM Initials:	Date/Time_		
	Email (email sent to/or			
Project Manager	s response:			3
				ı
				٠. ا
			tan Pa	
Completed By:	J Chullegra Date: 4/19/24			
÷	Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc. 931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209			
	www.enthalpy.com/socal			
	Sample Acceptance Charliet - Pay 4 9 /9 /2017			

Lisa Prasad Graniterock 350 Technology Dr Watsonville, CA 95076 Lab Job #: 506595 Project No: 8133 Location: MST Date Received: 04/17/24

Sample ID: MS1-4 Lab ID: 506595-001 Collected: 04/16/24 16:01

Matrix: Soil Basis: Dry

		Mati	rix: Soil				В	asis: Dry		
506595-001 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
Method: ASTM D2216								<u> </u>	<u> </u>	
Prep Method: METHOD										
Moisture, Percent	5		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B										
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	1.2	0.95	338281	04/19/24	04/21/24	SBW
Arsenic	2.0		mg/Kg	1.0	0.59	0.95	338281	04/19/24	04/21/24	SBW
Barium	20		mg/Kg	1.0	0.36	0.95	338281	04/19/24	04/21/24	SBW
Beryllium	0.14	J	mg/Kg	0.50	0.011	0.95	338281	04/19/24	04/21/24	SBW
Cadmium	0.098	J	mg/Kg	0.50	0.046	0.95	338281	04/19/24	04/21/24	SBW
Chromium	10		mg/Kg	1.0	0.12	0.95	338281	04/19/24	04/21/24	SBW
Cobalt	2.5		mg/Kg	0.50	0.27	0.95	338281	04/19/24	04/21/24	SBW
Copper	10		mg/Kg	1.0	0.20	0.95	338281	04/19/24	04/21/24	SBW
Lead	27		mg/Kg	1.0	0.38	0.95	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.95	338281	04/19/24	04/21/24	SBW
Nickel	11		mg/Kg	1.0	0.17	0.95	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.0	0.85	0.95	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.50	0.15	0.95	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.0	0.87	0.95	338281	04/19/24	04/21/24	SBW
Vanadium	14		mg/Kg	1.0	0.079	0.95	338281	04/19/24	04/21/24	SBW
Zinc	21		mg/Kg	5.0	0.37	0.95	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND		mg/Kg	0.16	0.039	1.1	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338322	04/20/24	04/22/24	TJW
DRO C10-C28	9.2	J	mg/Kg	10	3.6	1	338322	04/20/24	04/22/24	TJW
ORO C28-C44	42		mg/Kg	21	3.6	1	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	116%		%REC	70-130		1	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.3	1.3	1	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.3	1.8	1	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.3	1.1	1	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.3	1.4	1	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.3	1.6	1	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.3	1.4	1	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.3	1.9	1	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Dieldrin	ND		ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
	5		~9′.19			'	5555.2	J ./ = 1/ = 1	0 ., _0,	

	A	ilialysis f	iesuiis	101 5	UUJ	, 55			
506595-001 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
4,4'-DDE	ND	ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Endrin	ND	ug/Kg	5.3	1.7	1	338342	04/21/24	04/23/24	KLR
Endosulfan II	ND	ug/Kg	5.3	1.7	1	338342	04/21/24	04/23/24	KLR
Endosulfan sulfate	ND	ug/Kg	5.3	1.7	1	338342	04/21/24	04/23/24	KLR
4,4'-DDD	ND	ug/Kg	5.3	1.2	1	338342	04/21/24	04/23/24	KLR
Endrin aldehyde	ND	ug/Kg	5.3	1.8	1	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	11	5.4	1	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	110	16	1	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	53	12	1	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	90%	%REC			1	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	83%	%REC			1	338342	04/21/24	04/23/24	KLR
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	53	15	1	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg	53	24	1	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg	53	20	1	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg	53	19	1	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg	53	22	<u>:</u>	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND	ug/Kg	53	7.0	1	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND	ug/Kg	53	26	<u>.</u>	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg	53	17	1	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg ug/Kg	53	14	1	338342	04/21/24	04/23/24	KLR
Surrogates	IND	ug/Ng	Limits	14		330342	04/21/24	04/23/24	INLIT
Decachlorobiphenyl (PCB)	82%	%REC			1	338342	04/21/24	04/23/24	KLR
	02 /6	761 ILO	13-121		'	000072	04/21/24	04/20/24	INLIT
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.6	0.7	0.87	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND	ug/Kg ug/Kg	4.6	1.5	0.87	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND ND	ug/Kg ug/Kg	4.6	2.2	0.87	338583	04/24/24	04/24/24	EJB
Freon 12	ND ND	ug/Kg ug/Kg	4.6	1.6	0.87	338583	04/24/24	04/24/24	EJB
Chloromethane	ND ND	ug/Kg ug/Kg	4.6	2.1	0.87	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND ND			2.0	0.87	338583	04/24/24	04/24/24	EJB
Bromomethane	ND ND	ug/Kg		2.0	0.87	338583	04/24/24	04/24/24	EJB
		ug/Kg	4.6						
Chloroethane	ND	ug/Kg	4.6	1.3	0.87	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND	ug/Kg	4.6	1.3	0.87	338583	04/24/24	04/24/24	EJB
Acetone	ND	ug/Kg	91	56	0.87	338583	04/24/24	04/24/24	EJB
Freon 113	ND	ug/Kg	4.6	0.7	0.87	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND	ug/Kg	4.6	3.3	0.87	338583	04/24/24	04/24/24	EJB
MTBE	ND	ug/Kg		0.9	0.87	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND	ug/Kg	4.6	1.1	0.87	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND	ug/Kg	4.6	1.6	0.87	338583	04/24/24	04/24/24	EJB
2-Butanone	ND	ug/Kg	91	6.7	0.87	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND	ug/Kg	4.6	1.5	0.87	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND	ug/Kg	4.6	0.8	0.87	338583	04/24/24	04/24/24	EJB
Chloroform	ND	ug/Kg	4.6	0.7	0.87	338583	04/24/24	04/24/24	EJB
						000500	0.1/0.1/0.1	04/04/04	E ID
Bromochloromethane 1,1,1-Trichloroethane	ND ND	ug/Kg ug/Kg		1.5	0.87	338583 338583	04/24/24 04/24/24	04/24/24 04/24/24	EJB EJB

506595-001 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
1,1-Dichloropropene	ND	ug/Kg	4.6	1.1	0.87	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride	ND	ug/Kg	4.6	1.4	0.87	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane	ND	ug/Kg	4.6	1.1	0.87	338583	04/24/24	04/24/24	EJB
Benzene	ND	ug/Kg	4.6	1.0	0.87	338583	04/24/24	04/24/24	EJB
Trichloroethene	ND	ug/Kg	4.6	0.8	0.87	338583	04/24/24	04/24/24	EJB
1,2-Dichloropropane	ND	ug/Kg	4.6	2.1	0.87	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND	ug/Kg	4.6	1.6	0.87	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND	ug/Kg	4.6	1.9	0.87	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND	ug/Kg	4.6	0.8	0.87	338583	04/24/24	04/24/24	EJB
Toluene	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND	ug/Kg	4.6	0.7	0.87	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND	ug/Kg	4.6	1.7	0.87	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND	ug/Kg	4.6	1.0	0.87	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND	ug/Kg	4.6	0.8	0.87	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND	ug/Kg	4.6	0.7	0.87	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.6	1.0	0.87	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND	ug/Kg	4.6	0.8	0.87	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND	ug/Kg	9.1	1.8	0.87	338583	04/24/24	04/24/24	EJB
o-Xylene	ND	ug/Kg	4.6	0.9	0.87	338583	04/24/24	04/24/24	EJB
Styrene	ND	ug/Kg	4.6	1.0	0.87	338583	04/24/24	04/24/24	EJB
Bromoform	ND	ug/Kg	4.6	0.6	0.87	338583	04/24/24	04/24/24	EJB
Isopropylbenzene	ND	ug/Kg	4.6	0.6	0.87	338583	04/24/24	04/24/24	EJB
1,1,2,2-Tetrachloroethane	ND	ug/Kg	4.6	1.9	0.87	338583	04/24/24	04/24/24	EJB
1,2,3-Trichloropropane	ND	ug/Kg	4.6	1.4	0.87	338583	04/24/24	04/24/24	EJB
Propylbenzene	ND	ug/Kg	4.6	0.7	0.87	338583	04/24/24	04/24/24	EJB
Bromobenzene	ND	ug/Kg	4.6	1.0	0.87	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND	ug/Kg	4.6	0.6	0.87	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND	ug/Kg	4.6	1.0	0.87	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND	ug/Kg	4.6	0.5	0.87	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND	ug/Kg	4.6	0.7	0.87	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND	ug/Kg	4.6	0.6	0.87	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	ND	ug/Kg	4.6	0.6	0.87	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND	ug/Kg	4.6	1.3	0.87	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND	ug/Kg	4.6	1.0	0.87	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND	ug/Kg	4.6	0.9	0.87	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND	ug/Kg	4.6	8.0	0.87	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	4.6	1.6	0.87	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND	ug/Kg	4.6	1.1	0.87	338583	04/24/24	04/24/24	EJB
Naphthalene	ND	ug/Kg	4.6	1.2	0.87	338583	04/24/24	04/24/24	EJB
1,2,3-Trichlorobenzene	ND	ug/Kg	4.6	0.6	0.87	338583	04/24/24	04/24/24	EJB
Xylene (total)	ND	ug/Kg	4.6		0.87	338583	04/24/24	04/24/24	EJB
Surrogates			Limits						
Dibromofluoromethane	98%	%REC	70-145		0.87	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	108%	%REC	70-145		0.87	338583	04/24/24	04/24/24	EJB
Toluene-d8	95%	%REC	70-145		0.87	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	101%	%REC	70-145		0.87	338583	04/24/24	04/24/24	EJB

	-		0.0	3000		,,,,,				
506595-001 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	42	6.4	4	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND		ug/Kg	42	6.4	4	338344	04/21/24	04/24/24	HQN
Naphthalene	ND		ug/Kg	42	15	4	338344	04/21/24	04/24/24	HQN
Acenaphthylene	ND		ug/Kg	42	6.7	4	338344	04/21/24	04/24/24	HQN
Acenaphthene	ND		ug/Kg	42	4.4	4	338344	04/21/24	04/24/24	HQN
Fluorene	ND		ug/Kg	42	5.2	4	338344	04/21/24	04/24/24	HQN
Phenanthrene	ND		ug/Kg	42	9.2	4	338344	04/21/24	04/24/24	HQN
Anthracene	ND		ug/Kg	42	5.9	4	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND		ug/Kg	42	14	4	338344	04/21/24	04/24/24	HQN
Pyrene	ND		ug/Kg	42	15	4	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND		ug/Kg	42	4.5	4	338344	04/21/24	04/24/24	HQN
Chrysene	ND		ug/Kg	42	4.0	4	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	ND		ug/Kg	42	3.9	4	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND		ug/Kg	42	4.4	4	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND		ug/Kg	42	5.6	4	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	42	6.4	4	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	42	12	4	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	ND		ug/Kg	42	6.9	4	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	77%		%REC	27-125		4	338344	04/21/24	04/24/24	HQN
2-Fluorobiphenyl	80%		%REC	30-120		4	338344	04/21/24	04/24/24	HQN
Terphenyl-d14	80%		%REC	33-155		4	338344	04/21/24	04/24/24	HQN

Sample ID: MS2-1 Lab ID: 506595-002 Collected: 04/16/24 15:45

Matrix: Soil Basis: Dry

506595-002 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	2		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B										
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	1.2	0.99	338281	04/19/24	04/21/24	SBW
Arsenic	2.2		mg/Kg	1.0	0.60	0.99	338281	04/19/24	04/21/24	SBW
Barium	23		mg/Kg	1.0	0.36	0.99	338281	04/19/24	04/21/24	SBW
Beryllium	0.14	J	mg/Kg	0.51	0.011	0.99	338281	04/19/24	04/21/24	SBW
Cadmium	0.12	J	mg/Kg	0.51	0.046	0.99	338281	04/19/24	04/21/24	SBW
Chromium	9.5		mg/Kg	1.0	0.12	0.99	338281	04/19/24	04/21/24	SBW
Cobalt	2.6		mg/Kg	0.51	0.27	0.99	338281	04/19/24	04/21/24	SBW
Copper	10		mg/Kg	1.0	0.20	0.99	338281	04/19/24	04/21/24	SBW
Lead	44		mg/Kg	1.0	0.38	0.99	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.99	338281	04/19/24	04/21/24	SBW
Nickel	10		mg/Kg	1.0	0.17	0.99	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.0	0.85	0.99	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.51	0.16	0.99	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.0	0.88	0.99	338281	04/19/24	04/21/24	SBW
Vanadium	16		mg/Kg	1.0	0.079	0.99	338281	04/19/24	04/21/24	SBW
Zinc	24		mg/Kg	5.1	0.37	0.99	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	ND		mg/Kg	0.17	0.043	1.2	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M			3 3							
GRO C6-C12	ND		mg/Kg	10		0.99	338322	04/20/24	04/22/24	TJW
DRO C10-C28	17		mg/Kg	10	3.5	0.99	338322	04/20/24	04/22/24	TJW
ORO C28-C44	44		mg/Kg	20	3.5	0.99	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	123%		%REC	70-130		0.99	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.2	1.3	1	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.2	1.7	1	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.2	1.1	1	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.2	1.4	1	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.2	1.5	1	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.2	1.3	1	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.2	1.9	1	338342	04/21/24	04/23/24	KLR
·	ND		ug/Kg	5.2	1.5	1	338342	04/21/24	04/23/24	KLR
Endosulfan I			ug/Kg	5.2	1.5	1	338342	04/21/24	04/23/24	KLR
Endosulfan I Dieldrin	ND		ug/Kg							
	ND ND			5.2	1.5	1	338342	04/21/24	04/23/24	KLR
Dieldrin			ug/Kg		1.5 1.6	1	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	
Dieldrin 4,4'-DDE Endrin	ND ND		ug/Kg ug/Kg	5.2 5.2	1.6	1 1 1	338342	04/21/24	04/23/24	KLR
Dieldrin 4,4'-DDE	ND		ug/Kg	5.2		1 1 1				

Endrin aldehyde Endrin ketone 4,4'-DDT Methoxychlor Toxaphene Chlordane (Technical)	ND ND ND 3.4		Units ug/Kg ug/Kg	RL 5.2 5.2	1.7 1.4	1 1	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR
Endrin ketone 4,4'-DDT Methoxychlor Toxaphene	ND 3.4					1				
4,4'-DDT Methoxychlor Toxaphene	3.4		ug/Kg	5.2	1.4	1	338343	04/21/24	04/00/04	IZI D
Methoxychlor Toxaphene		$\overline{}$				•	0000 1 2	04/21/24	04/23/24	KLR
Toxaphene		J	ug/Kg	5.2	1.5	1	338342	04/21/24	04/23/24	KLR
•	ND		ug/Kg	10	5.2	1	338342	04/21/24	04/23/24	KLR
Chlordana (Toobaical)	ND		ug/Kg	100	15	1	338342	04/21/24	04/23/24	KLR
Officialité (Technical)	ND		ug/Kg	52	11	1	338342	04/21/24	04/23/24	KLR
Surrogates				Limits						
TCMX	101%		%REC	23-120		1	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	90%		%REC	24-120		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8082										
Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	52	15	1	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND		ug/Kg	52	23	1	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND		ug/Kg	52	19	1	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND		ug/Kg	52	18	1	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND		ug/Kg	52	22	1	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND		ug/Kg	52	6.8	1	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND		ug/Kg	52	25	1	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND		ug/Kg	52	17	1	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND		ug/Kg	52	14	1	338342	04/21/24	04/23/24	KLR
Surrogates			<u> </u>	Limits		•		0 ., ,	0 1/20/2 1	
Decachlorobiphenyl (PCB)	89%		%REC	19-121		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035										
3-Chloropropene	ND		ug/Kg	4.6	0.7	0.91	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.6	1.5	0.91	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.6	2.3	0.91	338583	04/24/24	04/24/24	EJB
Freon 12	ND		ug/Kg	4.6	1.6	0.91	338583	04/24/24	04/24/24	EJB
Chloromethane	ND		ug/Kg	4.6	2.1	0.91	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND		ug/Kg	4.6	2.1	0.91	338583	04/24/24	04/24/24	EJB
Bromomethane	ND		ug/Kg	4.6	2.1	0.91	338583	04/24/24	04/24/24	EJB
Chloroethane	ND		ug/Kg	4.6	1.3	0.91	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND		ug/Kg	4.6	1.3	0.91	338583	04/24/24	04/24/24	EJB
Acetone	ND		ug/Kg	93	56	0.91	338583	04/24/24	04/24/24	EJB
Freon 113	ND		ug/Kg	4.6	0.7	0.91	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND		ug/Kg	4.6	1.2	0.91	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND		ug/Kg	4.6	3.4	0.91	338583	04/24/24	04/24/24	EJB
MTBE	ND		ug/Kg	4.6	0.9	0.91	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND		ug/Kg	4.6	1.1	0.91	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND		ug/Kg	4.6	1.6	0.91	338583	04/24/24	04/24/24	EJB
2-Butanone	ND		ug/Kg	93	6.8	0.91	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND		ug/Kg	4.6	1.6	0.91	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND		ug/Kg	4.6	0.9	0.91	338583	04/24/24	04/24/24	EJB
Chloroform	ND		ug/Kg	4.6	0.7	0.91	338583	04/24/24	04/24/24	EJB
Bromochloromethane	ND		ug/Kg	4.6	1.5	0.91	338583	04/24/24	04/24/24	EJB
1,1,1-Trichloroethane	ND		ug/Kg	4.6	1.2	0.91	338583	04/24/24	04/24/24	EJB
1,1-Dichloropropene	ND		ug/Kg	4.6	1.2	0.91	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride	ND		ug/Kg	4.6	1.4	0.91	338583	04/24/24	04/24/24	EJB
Carbon retractionide										
	ND		ug/Ka	4.6	1.1	0.91	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane Benzene	ND ND		ug/Kg ug/Kg	4.6 4.6	1.1	0.91	338583 338583	04/24/24 04/24/24	04/24/24 04/24/24	EJB EJB

06595-002 Analyte	Result	Qual Units		MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND	ug/K	9 4.6	2.2	0.91	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND	ug/K	-	1.2	0.91	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND	ug/K	9 4.6	1.6	0.91	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND	ug/K	9 4.6	1.9	0.91	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND	ug/K	9 4.6	8.0	0.91	338583	04/24/24	04/24/24	EJB
Toluene	ND	ug/K	9 4.6	1.2	0.91	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND	ug/K	9 4.6	0.7	0.91	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND	ug/K	-	1.7	0.91	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND	ug/K		1.3	0.91	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND	ug/K	-	1.1	0.91	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND	ug/K	-	0.9	0.91	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND	ug/K	-	1.2	0.91	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND	ug/K	-	0.7	0.91	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND	ug/K	-	1.0	0.91	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND	ug/K	-	0.8	0.91	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND	ug/K	-	1.8	0.91	338583	04/24/24	04/24/24	EJB
o-Xylene	ND	ug/K		0.9	0.91	338583	04/24/24	04/24/24	EJB
Styrene	ND	ug/K	-	1.0	0.91	338583	04/24/24	04/24/24	EJB
Bromoform	ND	ug/K	-	0.6	0.91	338583	04/24/24	04/24/24	EJB
	ND	ug/K		0.6	0.91	338583	04/24/24	04/24/24	EJB
Isopropylbenzene		•	•				04/24/24		
1,1,2,2-Tetrachloroethane	ND	ug/K	-	1.9	0.91	338583		04/24/24	EJB
1,2,3-Trichloropropane	ND	ug/K	-	1.4	0.91	338583	04/24/24	04/24/24	EJB
Propylbenzene	ND	ug/K	-	0.7	0.91	338583	04/24/24	04/24/24	EJB
Bromobenzene	ND	ug/K		1.0	0.91	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND	ug/K	-	0.6	0.91	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND	ug/K	-	1.2	0.91	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND	ug/K	-	1.0	0.91	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND	ug/K	-	0.6	0.91	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND	ug/K	-	0.7	0.91	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND	ug/K	g 4.6	0.6	0.91	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	ND	ug/K	g 4.6	0.6	0.91	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND	ug/K	9 4.6	1.3	0.91	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND	ug/K	9 4.6	1.1	0.91	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND	ug/K	g 4.6	0.9	0.91	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND	ug/K	9 4.6	0.8	0.91	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND	ug/K	-	1.6	0.91	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND	ug/K	-	1.2	0.91	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND	ug/K		1.1	0.91	338583	04/24/24	04/24/24	EJB
Naphthalene	ND	ug/K	-	1.2	0.91	338583	04/24/24	04/24/24	EJB
1,2,3-Trichlorobenzene	ND	ug/K	-	0.6	0.91	338583	04/24/24	04/24/24	EJB
Xylene (total)	ND	ug/K	-		0.91	338583	04/24/24	04/24/24	EJB
urrogates	- 110	- ag/13	Limits		0.01		0 1/2 1/2 1	0 1/2 1/2 1	
Dibromofluoromethane	96%	%RE			0.91	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	106%	%RE			0.91	338583	04/24/24	04/24/24	EJB
Toluene-d8	98%	%RE			0.91	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	109%	%RE			0.91	338583	04/24/24	04/24/24	EJB
lethod: EPA 8270C-SIM	109 /6	/6NL	70-143		0.91	330303	04/24/24	04/24/24	
rep Method: EPA 3546	. In	,,,		0.1		000011	0.4/0.4/0.4	04/04/04	
1-Methylnaphthalene	ND	ug/K	-	3.1	2	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND	ug/K	•	3.1	2	338344	04/21/24	04/24/24	HQN
Naphthalene	ND	ug/K	20	7.3	2	338344	04/21/24	04/24/24	HQN

506595-002 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Acenaphthene	ND		ug/Kg	20	2.1	2	338344	04/21/24	04/24/24	HQN
Fluorene	ND		ug/Kg	20	2.5	2	338344	04/21/24	04/24/24	HQN
Phenanthrene	ND		ug/Kg	20	4.5	2	338344	04/21/24	04/24/24	HQN
Anthracene	ND		ug/Kg	20	2.9	2	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND		ug/Kg	20	6.9	2	338344	04/21/24	04/24/24	HQN
Pyrene	ND		ug/Kg	20	7.4	2	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND		ug/Kg	20	2.2	2	338344	04/21/24	04/24/24	HQN
Chrysene	3.2	J	ug/Kg	20	2.0	2	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	4.6	J	ug/Kg	20	1.9	2	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND		ug/Kg	20	2.1	2	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND		ug/Kg	20	2.7	2	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	20	3.1	2	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	20	5.7	2	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	5.5	J,b	ug/Kg	20	3.4	2	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	88%		%REC	27-125		10	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	81%		%REC	30-120		10	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	83%		%REC	33-155		10	338344	04/21/24	04/25/24	HQN

Sample ID: MS3-2 Lab ID: 506595-003 Collected: 04/16/24 15:22

Matrix: Soil Basis: Dry

506595-003 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	3		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B										
Prep Method: EPA 3050B	ND			0.1	1.0	0.00	000001	04/40/04	04/04/04	ODW
Antimony	ND		mg/Kg	3.1	1.2	0.99	338281	04/19/24	04/21/24	SBW
Arsenic	6.4		mg/Kg	1.0	0.60	0.99	338281	04/19/24	04/21/24	SBW
Barium	25		mg/Kg	1.0	0.36	0.99	338281	04/19/24	04/21/24	SBW
Beryllium	0.15	J	mg/Kg	0.51	0.011	0.99	338281	04/19/24	04/21/24	SBW
Cadmium	0.14	J	mg/Kg	0.51	0.047	0.99	338281	04/19/24	04/21/24	SBW
Chromium	13		mg/Kg	1.0	0.12	0.99	338281	04/19/24	04/21/24	SBW
Cobalt	3.6		mg/Kg	0.51	0.28	0.99	338281	04/19/24	04/21/24	SBW
Copper	24		mg/Kg	1.0	0.21	0.99	338281	04/19/24	04/21/24	SBW
Lead	40		mg/Kg	1.0	0.39	0.99	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.99	338281	04/19/24	04/21/24	SBW
Nickel	11		mg/Kg	1.0	0.17	0.99	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.1	0.86	0.99	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.51	0.16	0.99	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.1	0.89	0.99	338281	04/19/24	04/21/24	SBW
Vanadium	27		mg/Kg	1.0	0.080	0.99	338281	04/19/24	04/21/24	SBW
Zinc	32		mg/Kg	5.1	0.38	0.99	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND		mg/Kg	0.16	0.040	1.1	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		0.99	338322	04/20/24	04/22/24	TJW
DRO C10-C28	67		mg/Kg	10	3.6	0.99	338322	04/20/24	04/22/24	TJW
ORO C28-C44	81		mg/Kg	20	3.6	0.99	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	129%		%REC	70-130		0.99	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	1.2	0.98	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.1	1.7	0.98	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.1	1.1	0.98	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.1	1.4	0.98	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.1	1.3	0.98	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.1	1.8	0.98	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.1	1.4	0.98	338342	04/21/24	04/23/24	KLR
Dieldrin	ND		ug/Kg	5.1	1.4	0.98	338342	04/21/24	04/23/24	KLR
4,4'-DDE	2.2					0.98	338342	04/21/24	04/23/24	KLR
Endrin	ND	J	ug/Kg	5.1 5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
Endosulfan II			ug/Kg							KLR
Endosulfan sulfate	ND ND		ug/Kg	5.1 5.1	1.6	0.98	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR
			ug/Kg							
4,4'-DDD	ND		ug/Kg	5.1	1.1	0.98	338342	04/21/24	04/23/24	KLR

506595-003 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND		ug/Kg	5.1	1.7	0.98	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND		ug/Kg	5.1	1.4	0.98	338342	04/21/24	04/23/24	KLR
4,4'-DDT	4.0	J	ug/Kg	5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND		ug/Kg	10	5.1	0.98	338342	04/21/24	04/23/24	KLR
Toxaphene	ND		ug/Kg	100	15	0.98	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND		ug/Kg	51	11	0.98	338342	04/21/24	04/23/24	KLR
Surrogates				Limits						
TCMX	87%		%REC	23-120		0.98	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	88%		%REC	24-120		0.98	338342	04/21/24	04/23/24	KLR
Method: EPA 8082 Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	51	15	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND		ug/Kg	51	23	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND		ug/Kg	51	19	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND		ug/Kg	51	18	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND		ug/Kg	51	21	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND		ug/Kg	51	6.6	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND		ug/Kg	51	25	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND		ug/Kg	51	17	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND		ug/Kg	51	14	0.98	338342	04/21/24	04/23/24	KLR
Surrogates				Limits						
Decachlorobiphenyl (PCB)	88%		%REC	19-121		0.98	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035										
3-Chloropropene	ND		ug/Kg	5.0	8.0	0.97	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND		ug/Kg	5.0	1.6	0.97	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND		ug/Kg	5.0	2.4	0.97	338583	04/24/24	04/24/24	EJB
Freon 12	ND		ug/Kg	5.0	1.7	0.97	338583	04/24/24	04/24/24	EJB
Chloromethane	ND		ug/Kg	5.0	2.3	0.97	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND		ug/Kg	5.0	2.2	0.97	338583	04/24/24	04/24/24	EJB
Bromomethane	ND		ug/Kg	5.0	2.2	0.97	338583	04/24/24	04/24/24	EJB
Chloroethane	ND		ug/Kg	5.0	1.4	0.97	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND		ug/Kg	5.0	1.4	0.97	338583	04/24/24	04/24/24	EJB
Acetone	130		ug/Kg	100	60	0.97	338583	04/24/24	04/24/24	EJB
Freon 113	ND		ug/Kg	5.0	8.0	0.97	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND		ug/Kg	5.0	1.3	0.97	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND		ug/Kg	5.0	3.6	0.97	338583	04/24/24	04/24/24	EJB
MTBE	ND		ug/Kg	5.0	0.9	0.97	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND		ug/Kg	5.0	1.2	0.97	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND		ug/Kg	5.0	1.7	0.97	338583	04/24/24	04/24/24	EJB
2-Butanone	11	J	ug/Kg	100	7.3	0.97	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND		ug/Kg	5.0	1.7	0.97	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND		ug/Kg	5.0	0.9	0.97	338583	04/24/24	04/24/24	EJB
Chloroform	ND		ug/Kg	5.0	8.0	0.97	338583	04/24/24	04/24/24	EJB
Bromochloromethane	ND		ug/Kg	5.0	1.6	0.97	338583	04/24/24	04/24/24	EJB
1,1,1-Trichloroethane	ND		ug/Kg	5.0	1.2	0.97	338583	04/24/24	04/24/24	EJB
1,1-Dichloropropene	ND		ug/Kg	5.0	1.2	0.97	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride	ND		ug/Kg	5.0	1.5	0.97	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane	ND		ug/Kg	5.0	1.2	0.97	338583	04/24/24	04/24/24	EJB
Benzene	1.7	J	ug/Kg	5.0	1.1	0.97	338583	04/24/24	04/24/24	EJB
	ND									

506595-003 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND		ug/Kg	5.0	2.3	0.97	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND		ug/Kg	5.0	1.3	0.97	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND		ug/Kg	5.0	1.7	0.97	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND		ug/Kg	5.0	2.1	0.97	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND		ug/Kg	5.0	0.9	0.97	338583	04/24/24	04/24/24	EJB
Toluene	2.0	J	ug/Kg	5.0	1.3	0.97	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND		ug/Kg	5.0	0.7	0.97	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND		ug/Kg	5.0	1.8	0.97	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND		ug/Kg	5.0	1.4	0.97	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND		ug/Kg	5.0	1.1	0.97	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND		ug/Kg	5.0	0.9	0.97	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND		ug/Kg	5.0	1.3	0.97	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND		ug/Kg	5.0	0.8	0.97	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.0	1.1	0.97	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND		ug/Kg	5.0	0.9	0.97	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND		ug/Kg	10	1.9	0.97	338583	04/24/24	04/24/24	EJB
o-Xylene	ND		ug/Kg	5.0	1.0	0.97	338583	04/24/24	04/24/24	EJB
Styrene	ND		ug/Kg	5.0	1.1	0.97	338583	04/24/24	04/24/24	EJB
Bromoform	ND		ug/Kg ug/Kg	5.0	0.7	0.97	338583	04/24/24	04/24/24	EJB
Isopropylbenzene	ND		ug/Kg ug/Kg	5.0	0.7	0.97	338583	04/24/24	04/24/24	EJB
1,1,2,2-Tetrachloroethane	ND		ug/Kg ug/Kg	5.0	2.1	0.97	338583	04/24/24	04/24/24	EJB
					1.5		338583		04/24/24	EJB
1,2,3-Trichloropropane	ND		ug/Kg	5.0		0.97		04/24/24		
Propylbenzene	ND		ug/Kg	5.0	0.7	0.97	338583	04/24/24	04/24/24	EJB
Bromobenzene	ND		ug/Kg	5.0	1.1	0.97	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND		ug/Kg	5.0	0.6	0.97	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND		ug/Kg	5.0	1.3	0.97	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND		ug/Kg	5.0	1.1	0.97	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND		ug/Kg	5.0	0.6	0.97	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND		ug/Kg	5.0	0.8	0.97	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND		ug/Kg	5.0	0.7	0.97	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	8.2		ug/Kg	5.0	0.7	0.97	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND		ug/Kg	5.0	1.4	0.97	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND		ug/Kg	5.0	1.1	0.97	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND		ug/Kg	5.0	0.9	0.97	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND		ug/Kg	5.0	0.8	0.97	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.0	1.7	0.97	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND		ug/Kg	5.0	1.3	0.97	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND		ug/Kg	5.0	1.2	0.97	338583	04/24/24	04/24/24	EJB
Naphthalene	ND		ug/Kg	5.0	1.3	0.97	338583	04/24/24	04/24/24	EJB
1,2,3-Trichlorobenzene	ND		ug/Kg	5.0	0.7	0.97	338583	04/24/24	04/24/24	EJB
Xylene (total)	ND		ug/Kg	5.0		0.97	338583	04/24/24	04/24/24	EJB
urrogates				Limits						
Dibromofluoromethane	97%		%REC	70-145		0.97	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	108%		%REC	70-145		0.97	338583	04/24/24	04/24/24	EJB
Toluene-d8	102%		%REC	70-145		0.97	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	110%		%REC	70-145		0.97	338583	04/24/24	04/24/24	EJB
lethod: EPA 8270C-SIM rep Method: EPA 3546										
1-Methylnaphthalene	29		ug/Kg	21	3.1	2	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	31		ug/Kg ug/Kg	21	3.1	2	338344	04/21/24	04/24/24	HQN
Naphthalene	23		ug/Kg	21	7.4	2	338344	04/21/24	04/24/24	HQN
Acenaphthylene	ND		ug/r\g	۱ ک	1.4	_	JJ0J44	U7/4 1/44	UH/LH/LH	וועוו

506595-003 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
								0.1/0.1/0.1	0.1/0.1/0.1	
Acenaphthene	ND		ug/Kg	21	2.1	2	338344	04/21/24	04/24/24	HQN
Fluorene	ND		ug/Kg	21	2.6	2	338344	04/21/24	04/24/24	HQN
Phenanthrene	17	J	ug/Kg	21	4.5	2	338344	04/21/24	04/24/24	HQN
Anthracene	4.2	J	ug/Kg	21	2.9	2	338344	04/21/24	04/24/24	HQN
Fluoranthene	9.0	J	ug/Kg	21	6.9	2	338344	04/21/24	04/24/24	HQN
Pyrene	10	J	ug/Kg	21	7.5	2	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	3.8	J	ug/Kg	21	2.2	2	338344	04/21/24	04/24/24	HQN
Chrysene	8.0	J	ug/Kg	21	2.0	2	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	9.2	J	ug/Kg	21	1.9	2	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND		ug/Kg	21	2.2	2	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	3.5	J	ug/Kg	21	2.8	2	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	4.3	J,b	ug/Kg	21	3.2	2	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	21	5.8	2	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	8.5	J,b	ug/Kg	21	3.4	2	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	83%		%REC	27-125		10	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	77%		%REC	30-120		10	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	76%		%REC	33-155		10	338344	04/21/24	04/25/24	HQN

Sample ID: MS4-0.5 Lab ID: 506595-004 Collected: 04/16/24 15:31

Matrix: Soil Basis: Dry

506595-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	4		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B										
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	1.2	0.97	338281	04/19/24	04/21/24	SBW
Arsenic	1.8		mg/Kg	1.0	0.60	0.97	338281	04/19/24	04/21/24	SBW
Barium	12		mg/Kg	1.0	0.36	0.97	338281	04/19/24	04/21/24	SBW
Beryllium	0.15	J	mg/Kg	0.51	0.011	0.97	338281	04/19/24	04/21/24	SBW
Cadmium	0.047	J	mg/Kg	0.51	0.046	0.97	338281	04/19/24	04/21/24	SBW
Chromium	9.0		mg/Kg	1.0	0.12	0.97	338281	04/19/24	04/21/24	SBW
Cobalt	1.6		mg/Kg	0.51	0.27	0.97	338281	04/19/24	04/21/24	SBW
Copper	1.8		mg/Kg	1.0	0.20	0.97	338281	04/19/24	04/21/24	SBW
Lead	1.5		mg/Kg	1.0	0.38	0.97	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.97	338281	04/19/24	04/21/24	SBW
Nickel	8.1		mg/Kg	1.0	0.17	0.97	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.0	0.85	0.97	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.51	0.16	0.97	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.0	0.88	0.97	338281	04/19/24	04/21/24	SBW
Vanadium	9.2		mg/Kg	1.0	0.079	0.97	338281	04/19/24	04/21/24	SBW
Zinc	11		mg/Kg	5.1	0.37	0.97	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	ND		mg/Kg	0.15	0.037	1	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M			3 3							
GRO C6-C12	ND		mg/Kg	10		1	338322	04/20/24	04/22/24	TJW
DRO C10-C28	4.1	J	mg/Kg	10	3.6	1	338322	04/20/24	04/22/24	TJW
ORO C28-C44	5.1	J	mg/Kg	21	3.6	1	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	114%		%REC	70.400		1	338322	04/20/24	04/22/24	T 1147
				70-130			000022	0 1/20/21	UT/ LL/ LT	TJW
Method: EPA 8081A Prep Method: EPA 3546				70-130			000022	0 1/20/21	04/22/24	IJW
	ND		ug/Kg	5.2	1.3	0.99	338342	04/21/24	04/23/24	KLR
Prep Method: EPA 3546	ND ND				1.3	0.99				
Prep Method: EPA 3546 alpha-BHC			ug/Kg	5.2			338342	04/21/24	04/23/24	KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC	ND		ug/Kg ug/Kg	5.2 5.2	1.7	0.99	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC	ND ND		ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2	1.7 1.1	0.99	338342 338342 338342	04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24	KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2	1.7 1.1 1.4	0.99 0.99 0.99	338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6	0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin	ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3	0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide	ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9	0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I	ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9	0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	ND ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9 1.5	0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	ND N		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9 1.5 1.5	0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE	ND N		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9 1.5 1.5	0.99 0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR

	_	ilialysis f	icsuits	101 3	0053	,5			
506595-004 Analyte	Result		RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.2	1.7	0.99	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.2	1.4	0.99	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.2	1.5	0.99	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	10	5.2	0.99	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	100	15	0.99	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	52	11	0.99	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	99%	%REC	23-120		0.99	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	84%	%REC	24-120		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	52	15	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg		23	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg		19	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg ug/Kg		18	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg ug/Kg		22	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND			6.8	0.99	338342	04/21/24	04/23/24	KLR
		ug/Kg							
Aroclor-1260	ND	ug/Kg		25	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg		17	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg		14	0.99	338342	04/21/24	04/23/24	KLR
Surrogates Describeration and (DCD)	070/	0/ DEC	Limits		0.00	000040	04/01/04	04/00/04	I/I D
Decachlorobiphenyl (PCB)	87%	%REC	19-121		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.2	0.7	0.8	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.2	1.3	8.0	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.2	2.0	0.8	338583	04/24/24	04/24/24	EJB
Freon 12	ND	ug/Kg	4.2	1.5	0.8	338583	04/24/24	04/24/24	EJB
Chloromethane	ND	ug/Kg	4.2	1.9	0.8	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND	ug/Kg	4.2	1.9	0.8	338583	04/24/24	04/24/24	EJB
Bromomethane	ND	ug/Kg		1.9	0.8	338583	04/24/24	04/24/24	EJB
Chloroethane	ND	ug/Kg		1.1	0.8	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND	ug/Kg		1.2	0.8	338583	04/24/24	04/24/24	EJB
Acetone	ND	ug/Kg		51	0.8	338583	04/24/24	04/24/24	EJB
Freon 113	ND	ug/Kg		0.7	0.8	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND	ug/Kg		1.1	0.8	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND	ug/Kg		3.1	0.8	338583	04/24/24	04/24/24	EJB
MTBE	ND	ug/Kg		0.8	0.8	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND	ug/Kg		1.0	0.8	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND	ug/Kg		1.5	0.8	338583	04/24/24	04/24/24	EJB
2-Butanone	ND	ug/Kg		6.1	0.8	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND	ug/Kg		1.4	0.8	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND	ug/Kg		0.8	0.8	338583	04/24/24	04/24/24	EJB
Chloroform	ND	ug/Kg		0.6	0.8	338583	04/24/24	04/24/24	EJB
Bromochloromethane	ND	ug/Kg ug/Kg		1.4	0.8	338583	04/24/24	04/24/24	EJB
1,1,1-Trichloroethane	ND	ug/Kg ug/Kg		1.4	0.8	338583	04/24/24	04/24/24	EJB
1,1-Dichloropropene	ND			1.0	0.8	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride		ug/Kg							
	ND	ug/Kg		1.3	0.8	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane	ND	ug/Kg		1.0	0.8	338583	04/24/24	04/24/24	EJB
Benzene	ND	ug/Kg		1.0	0.8	338583	04/24/24	04/24/24	EJB
Trichloroethene	ND	ug/Kg	4.2	0.7	0.8	338583	04/24/24	04/24/24	EJB

506595-004 Analyte	Result	Qual U	nits	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND	u	g/Kg	4.2	2.0	0.8	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND	U	g/Kg	4.2	1.1	0.8	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND	u	g/Kg	4.2	1.5	0.8	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND	u	g/Kg	4.2	1.7	0.8	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND	u	g/Kg	4.2	0.7	0.8	338583	04/24/24	04/24/24	EJB
Toluene	ND	u	g/Kg	4.2	1.1	0.8	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND	U	g/Kg	4.2	0.6	0.8	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND	U	g/Kg	4.2	1.5	0.8	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND		g/Kg	4.2	1.1	0.8	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND		g/Kg	4.2	0.9	0.8	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND		g/Kg	4.2	0.8	0.8	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND		g/Kg	4.2	1.1	0.8	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND		g/Kg	4.2	0.6	0.8	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND		g/Kg	4.2	0.9	0.8	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND		g/Kg	4.2	0.7	0.8	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND		g/Kg	8.4	1.6	0.8	338583	04/24/24	04/24/24	EJB
o-Xylene	ND		g/Kg	4.2	0.8	0.8	338583	04/24/24	04/24/24	EJB
Styrene	ND		g/Kg	4.2	0.9	0.8	338583	04/24/24	04/24/24	EJB
Bromoform	ND		g/Kg	4.2	0.6	0.8	338583	04/24/24	04/24/24	EJB
Isopropylbenzene	ND		g/Kg g/Kg	4.2	0.6	0.8	338583	04/24/24	04/24/24	EJB
1,1,2,2-Tetrachloroethane	ND		g/Kg g/Kg	4.2	1.8	0.8	338583	04/24/24	04/24/24	EJB
									04/24/24	EJB
1,2,3-Trichloropropane	ND		g/Kg	4.2	1.3	0.8	338583	04/24/24		
Propylbenzene	ND		g/Kg	4.2	0.6	0.8	338583	04/24/24	04/24/24	EJB
Bromobenzene	ND		g/Kg	4.2	0.9	0.8	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND		g/Kg	4.2	0.5	0.8	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND		g/Kg	4.2	1.1	8.0	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND		g/Kg	4.2	0.9	0.8	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND		g/Kg	4.2	0.5	8.0	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND		g/Kg	4.2	0.7	0.8	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND		g/Kg	4.2	0.6	0.8	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	ND		g/Kg	4.2	0.5	0.8	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND	u	g/Kg	4.2	1.2	0.8	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND	u	g/Kg	4.2	1.0	0.8	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND	u	g/Kg	4.2	0.8	0.8	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND	u	g/Kg	4.2	0.7	0.8	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND	u	g/Kg	4.2	1.4	0.8	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND	u	g/Kg	4.2	1.1	8.0	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND	u	g/Kg	4.2	1.0	0.8	338583	04/24/24	04/24/24	EJB
Naphthalene	ND	u	g/Kg	4.2	1.1	0.8	338583	04/24/24	04/24/24	EJB
1,2,3-Trichlorobenzene	ND	U	g/Kg	4.2	0.6	0.8	338583	04/24/24	04/24/24	EJB
Xylene (total)	ND		g/Kg	4.2		0.8	338583	04/24/24	04/24/24	EJB
urrogates		<u> </u>		Limits						
Dibromofluoromethane	96%	%	REC	70-145		0.8	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	107%		REC	70-145		0.8	338583	04/24/24	04/24/24	EJB
Toluene-d8	98%		REC	70-145		0.8	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	103%		REC	70-145		0.8	338583	04/24/24	04/24/24	EJB
lethod: EPA 8270C-SIM rep Method: EPA 3546	. 30,0									
1-Methylnaphthalene	ND	110	g/Kg	10	1.6	1	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND		g/Kg	10	1.6	1	338344	04/21/24	04/24/24	HQN
Naphthalene	ND		g/Kg g/Kg	10	3.8	1	338344	04/21/24	04/24/24	HQN
napritrialene	מא	u	g/TNY	10	5.0	ı	JJ0J44	UH/ZI/ZH	U H /44/44	וועוו

506595-004 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
								0.1/0.1/0.1	0.1/0.1/0.1	
Acenaphthene	ND		ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Fluorene	ND		ug/Kg	10	1.3	1	338344	04/21/24	04/24/24	HQN
Phenanthrene	ND		ug/Kg	10	2.3	1	338344	04/21/24	04/24/24	HQN
Anthracene	ND		ug/Kg	10	1.5	1	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND		ug/Kg	10	3.5	1	338344	04/21/24	04/24/24	HQN
Pyrene	ND		ug/Kg	10	3.8	1	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND		ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Chrysene	ND		ug/Kg	10	1.0	1	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	1.9	J	ug/Kg	10	0.97	1	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND		ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND		ug/Kg	10	1.4	1	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	10	1.6	1	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	10	2.9	1	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	2.8	J,b	ug/Kg	10	1.7	1	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	83%		%REC	27-125		10	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	82%		%REC	30-120		10	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	82%		%REC	33-155		10	338344	04/21/24	04/25/24	HQN

Sample ID: RA 1-3 Lab ID: 506595-005 Collected: 04/16/24 12:28

Matrix: Soil Basis: Dry

506595-005 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	3		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	1.2	0.97	338281	04/19/24	04/21/24	SBW
Arsenic	2.4		mg/Kg	1.0	0.59	0.97	338281	04/19/24	04/21/24	SBW
Barium	9.5		mg/Kg	1.0	0.36	0.97	338281	04/19/24	04/21/24	SBW
Beryllium	0.069	B,J	mg/Kg	0.50	0.011	0.97	338281	04/19/24	04/21/24	SBW
Cadmium	0.050	J	mg/Kg	0.50	0.046	0.97	338281	04/19/24	04/21/24	SBW
Chromium	10		mg/Kg	1.0	0.12	0.97	338281	04/19/24	04/21/24	SBW
Cobalt	1.4		mg/Kg	0.50	0.27	0.97	338281	04/19/24	04/21/24	SBW
Copper	0.97	J	mg/Kg	1.0	0.20	0.97	338281	04/19/24	04/21/24	SBW
Lead	1.3		mg/Kg	1.0	0.38	0.97	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.97	338281	04/19/24	04/21/24	SBW
Nickel	7.1		mg/Kg	1.0	0.17	0.97	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.0	0.85	0.97	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.50	0.15	0.97	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.0	0.87	0.97	338281	04/19/24	04/21/24	SBW
Vanadium	9.2		mg/Kg	1.0	0.079	0.97	338281	04/19/24	04/21/24	SBW
Zinc	8.2		mg/Kg	5.0	0.37	0.97	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	ND		mg/Kg	0.16	0.041	1.1	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338322	04/20/24	04/22/24	TJW
DRO C10-C28	ND		mg/Kg	10	3.6	1	338322	04/20/24	04/22/24	TJW
ORO C28-C44	ND		mg/Kg	21	3.6	1	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	129%		%REC	70-130		1	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	1.2	0.99	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.1	1.7	0.99	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.1	1.1	0.99	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.1	1.4	0.99	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.1	1.5	0.99	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.1	1.3	0.99	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.1	1.9	0.99	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.1	1.5	0.99	338342	04/21/24	04/23/24	KLR
Dieldrin	ND		ug/Kg	5.1	1.5	0.99	338342	04/21/24	04/23/24	KLR
4,4'-DDE	ND		ug/Kg	5.1	1.5	0.99	338342	04/21/24	04/23/24	KLR
,			ug/Kg	5.1	1.6	0.99	338342	04/21/24	04/23/24	KLR
Endrin	ND		ug/itg	• • • •						
	ND ND		ug/Kg	5.1	1.6	0.99	338342	04/21/24	04/23/24	KLR
Endrin						0.99	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR KLR

506595-005 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.1	1.7	0.99	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.1	1.4	0.99	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.1	1.5	0.99	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	10	5.2	0.99	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	100	15	0.99	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	51	11	0.99	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	96%	%REC	23-120		0.99	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	86%	%REC	24-120		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	51	15	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg	51	23	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg	51	19	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg	51	18	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg	51	22	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND	ug/Kg	51	6.7	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND	ug/Kg	51	25	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg	51	17	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg	51	14	0.99	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
Decachlorobiphenyl (PCB)	86%	%REC	19-121		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.2	0.6	0.81	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.2	1.3	0.81	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.2	2.0	0.81	338583	04/24/24	04/24/24	EJB
Freon 12	ND	ug/Kg	4.2	1.5	0.81	338583	04/24/24	04/24/24	EJB
Chloromethane	ND	ug/Kg	4.2	1.9	0.81	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND	ug/Kg	4.2	1.9	0.81	338583	04/24/24	04/24/24	EJB
Bromomethane	ND	ug/Kg	4.2	1.9	0.81	338583	04/24/24	04/24/24	EJB
Chloroethane	ND	ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND	ug/Kg	4.2	1.2	0.81	338583	04/24/24	04/24/24	EJB
Acetone	ND	ug/Kg	83	51	0.81	338583	04/24/24	04/24/24	EJB
Freon 113	ND	ug/Kg	4.2	0.7	0.81	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND	ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND	ug/Kg	4.2	3.0	0.81	338583	04/24/24	04/24/24	EJB
MTBE	ND	ug/Kg	4.2	8.0	0.81	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND	ug/Kg	4.2	1.0	0.81	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND	ug/Kg	4.2	1.5	0.81	338583	04/24/24	04/24/24	EJB
2-Butanone	ND	ug/Kg	83	6.1	0.81	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND	ug/Kg	4.2	1.4	0.81	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND	ug/Kg	4.2	8.0	0.81	338583	04/24/24	04/24/24	EJB
Chloroform	ND	ug/Kg	4.2	0.6	0.81	338583	04/24/24	04/24/24	EJB
Bromochloromethane	ND	ug/Kg	4.2	1.4	0.81	338583	04/24/24	04/24/24	EJB
1,1,1-Trichloroethane	ND	ug/Kg	4.2	1.0	0.81	338583	04/24/24	04/24/24	EJB
1,1-Dichloropropene	ND	ug/Kg	4.2	1.0	0.81	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride	ND	ug/Kg	4.2	1.2	0.81	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane	ND	ug/Kg	4.2	1.0	0.81	338583	04/24/24	04/24/24	EJB
Benzene	ND	ug/Kg	4.2	0.9	0.81	338583	04/24/24	04/24/24	EJB
Trichloroethene	ND	ug/Kg	4.2	0.7	0.81	338583	04/24/24	04/24/24	EJB

506595-005 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND		ug/Kg	4.2	1.9	0.81	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND		ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND		ug/Kg	4.2	1.5	0.81	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND		ug/Kg	4.2	1.7	0.81	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND		ug/Kg	4.2	0.7	0.81	338583	04/24/24	04/24/24	EJB
Toluene	ND		ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND		ug/Kg	4.2	0.6	0.81	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND		ug/Kg	4.2	1.5	0.81	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND		ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND		ug/Kg	4.2	0.9	0.81	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND		ug/Kg	4.2	0.8	0.81	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND		ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND		ug/Kg	4.2	0.6	0.81	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND		ug/Kg	4.2	0.9	0.81	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND		ug/Kg	4.2	0.7	0.81	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND		ug/Kg	8.3	1.6	0.81	338583	04/24/24	04/24/24	EJB
o-Xylene	ND		ug/Kg	4.2	0.8	0.81	338583	04/24/24	04/24/24	EJB
Styrene	ND		ug/Kg	4.2	0.0	0.81	338583	04/24/24	04/24/24	EJB
Bromoform	ND		ug/Kg ug/Kg	4.2	0.9	0.81	338583	04/24/24	04/24/24	EJB
			ug/Kg ug/Kg	4.2	0.6	0.81			04/24/24	EJB
Isopropylbenzene	ND						338583	04/24/24		
1,1,2,2-Tetrachloroethane	ND		ug/Kg	4.2	1.7	0.81	338583	04/24/24	04/24/24	EJB
1,2,3-Trichloropropane	ND		ug/Kg	4.2	1.3	0.81	338583	04/24/24	04/24/24	EJB
Propylbenzene	ND		ug/Kg	4.2	0.6	0.81	338583	04/24/24	04/24/24	EJB
Bromobenzene	ND		ug/Kg	4.2	0.9	0.81	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND		ug/Kg	4.2	0.5	0.81	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND		ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND		ug/Kg	4.2	0.9	0.81	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND		ug/Kg	4.2	0.5	0.81	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND		ug/Kg	4.2	0.7	0.81	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND		ug/Kg	4.2	0.6	0.81	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	ND		ug/Kg	4.2	0.5	0.81	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND		ug/Kg	4.2	1.2	0.81	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND		ug/Kg	4.2	0.9	0.81	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND		ug/Kg	4.2	8.0	0.81	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND		ug/Kg	4.2	0.7	0.81	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.2	1.4	0.81	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND		ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND		ug/Kg	4.2	1.0	0.81	338583	04/24/24	04/24/24	EJB
Naphthalene	ND		ug/Kg	4.2	1.1	0.81	338583	04/24/24	04/24/24	EJB
1,2,3-Trichlorobenzene	ND		ug/Kg	4.2	0.6	0.81	338583	04/24/24	04/24/24	EJB
Xylene (total)	ND		ug/Kg	4.2		0.81	338583	04/24/24	04/24/24	EJB
urrogates			- 3- 3	Limits						
Dibromofluoromethane	96%		%REC	70-145		0.81	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	106%		%REC	70-145		0.81	338583	04/24/24	04/24/24	EJB
Toluene-d8	95%		%REC	70-145		0.81	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	96%		%REC	70-145		0.81	338583	04/24/24	04/24/24	EJB
lethod: EPA 8270C-SIM rep Method: EPA 3546	3070		701120	70 143		0.01	000000	04/24/24	04/24/24	
1-Methylnaphthalene	4.2	J	ug/Kg	10	1.6	1	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	5.5	J	ug/Kg	10	1.6	<u>.</u> 1	338344	04/21/24	04/24/24	HQN
Naphthalene	ND		ug/Kg	10	3.7	1	338344	04/21/24	04/24/24	HQN
Acenaphthylene	2.6		ug/itg	10	0.7		JUUUTT	UT/LI/LT	UT/LT/LT	110(1)

506595-005 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Acananhthana	5.6		a/l/a	10	4.4	- 4	338344	04/21/24	04/24/24	HQN
Acenaphthene		J	ug/Kg		1.1	<u> </u>				
Fluorene	7.4	J	ug/Kg	10	1.3	1	338344	04/21/24	04/24/24	HQN
Phenanthrene	5.4	J	ug/Kg	10	2.3	1	338344	04/21/24	04/24/24	HQN
Anthracene	6.0	J	ug/Kg	10	1.5	1	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND		ug/Kg	10	3.5	1	338344	04/21/24	04/24/24	HQN
Pyrene	ND		ug/Kg	10	3.8	1	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND		ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Chrysene	ND		ug/Kg	10	1.0	1	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	ND		ug/Kg	10	0.96	1	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND		ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND		ug/Kg	10	1.4	1	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	10	1.6	1	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	10	2.9	1	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	ND		ug/Kg	10	1.7	1	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	80%		%REC	27-125		10	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	76%		%REC	30-120		10	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	77%		%REC	33-155		10	338344	04/21/24	04/25/24	HQN

Sample ID: RA 2-4 Lab ID: 506595-006 Collected: 04/16/24 11:55

Matrix: Soil Basis: Dry

506595-006 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	4		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.1	1.2	0.98	338281	04/19/24	04/21/24	SBW
Arsenic	2.0		mg/Kg	1.0	0.60	0.98	338281	04/19/24	04/21/24	SBW
Barium	8.3		mg/Kg	1.0	0.36	0.98	338281	04/19/24	04/21/24	SBW
Beryllium	0.078	B,J	mg/Kg	0.51	0.011	0.98	338281	04/19/24	04/21/24	SBW
Cadmium	ND		mg/Kg	0.51	0.047	0.98	338281	04/19/24	04/21/24	SBW
Chromium	4.3		mg/Kg	1.0	0.12	0.98	338281	04/19/24	04/21/24	SBW
Cobalt	0.61		mg/Kg	0.51	0.28	0.98	338281	04/19/24	04/21/24	SBW
Copper	0.83	J	mg/Kg	1.0	0.21	0.98	338281	04/19/24	04/21/24	SBW
Lead	0.57	J	mg/Kg	1.0	0.39	0.98	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.98	338281	04/19/24	04/21/24	SBW
Nickel	3.7		mg/Kg	1.0	0.17	0.98	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.1	0.86	0.98	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.51	0.16	0.98	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.1	0.89	0.98	338281	04/19/24	04/21/24	SBW
Vanadium	4.3		mg/Kg	1.0	0.080	0.98	338281	04/19/24	04/21/24	SBW
Zinc	3.6	J	mg/Kg	5.1	0.38	0.98	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	ND		mg/Kg	0.17	0.043	1.2	338363	04/22/24	04/22/24	KAM
Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		0.99	338322	04/20/24	04/22/24	TJW
DRO C10-C28	ND		mg/Kg	10	3.6	0.99	338322	04/20/24	04/22/24	TJW
ORO C28-C44	4.3	J	mg/Kg	21	3.6	0.99	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	106%		%REC	70-130		0.99	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	1.3	0.98	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.1	1.7	0.98	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.1	1.1	0.98	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.1	1.4	0.98	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.1	1.3	0.98	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.1	1.9	0.98	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
Dieldrin	ND		ug/Kg	5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
4,4'-DDE	ND		ug/Kg	5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
Endrin	ND		ug/Kg	5.1	1.6	0.98	338342	04/21/24	04/23/24	KLR
Endosulfan II	ND		ug/Kg	5.1	1.6	0.98	338342	04/21/24	04/23/24	KLR
Endosulfan sulfate	ND		ug/Kg	5.1	1.7	0.98	338342	04/21/24	04/23/24	KLR
4,4'-DDD	ND		ug/Kg	5.1	1.1	0.98	338342	04/21/24	04/23/24	KLR

		ilialysis F	icsuits	101 3		,5			
506595-006 Analyte	Result		RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.1	1.7	0.98	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.1	1.4	0.98	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.1	1.5	0.98	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	10	5.2	0.98	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	100	15	0.98	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	51	11	0.98	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	99%	%REC	23-120		0.98	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	93%	%REC	24-120		0.98	338342	04/21/24	04/23/24	KLR
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	51	15	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg	51	23	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg	51	19	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg	51	18	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg	51	22	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND	ug/Kg	51	6.7	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND	ug/Kg	51	25	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg	51	17	0.98	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg	51	14	0.98	338342	04/21/24	04/23/24	KLR
Surrogates		9/1-9	Limits				• 11 - 11 - 1		
Decachlorobiphenyl (PCB)	93%	%REC			0.98	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.3	1.4	0.83	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.3	2.1	0.83	338583	04/24/24	04/24/24	EJB
Freon 12	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
Chloromethane	ND	ug/Kg	4.3	2.0	0.83	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND	ug/Kg	4.3	1.9	0.83	338583	04/24/24	04/24/24	EJB
Bromomethane	ND	ug/Kg	4.3	2.0	0.83	338583	04/24/24	04/24/24	EJB
Chloroethane	ND	ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND	ug/Kg	4.3	1.3	0.83	338583	04/24/24	04/24/24	EJB
Acetone	ND	ug/Kg	87	53	0.83	338583	04/24/24	04/24/24	EJB
Freon 113	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND	ug/Kg	4.3	3.2	0.83	338583	04/24/24	04/24/24	EJB
MTBE	ND	ug/Kg	4.3	0.8	0.83	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
2-Butanone	ND	ug/Kg	87	6.4	0.83	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND	ug/Kg	4.3	0.8	0.83	338583	04/24/24	04/24/24	EJB
Chloroform	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
Bromochloromethane	ND	ug/Kg	4.3	1.4	0.83	338583	04/24/24	04/24/24	EJB
1,1,1-Trichloroethane	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
1,1-Dichloropropene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride	ND	ug/Kg	4.3	1.3	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane	ND ND	ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
Benzene	ND ND	ug/Kg		1.0	0.83	338583	04/24/24	04/24/24	EJB
Trichloroethene	ND ND	ug/Kg ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
Themoroethene	טוו	ug/Ng	4.3	0.7	0.03	000000	U4/24/24	U4/24/24	LJD

506595-006 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND	ug/Kg	4.3	2.0	0.83	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND	ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND	ug/Kg	4.3	1.8	0.83	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
Toluene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND	ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND	ug/Kg	4.3	1.6	0.83	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND	ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND	ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND	ug/Kg	4.3	0.8	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND	ug/Kg		0.8	0.83	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND	ug/Kg	8.7	1.7	0.83	338583	04/24/24	04/24/24	EJB
o-Xylene	ND	ug/Kg	4.3	0.9	0.83	338583	04/24/24	04/24/24	EJB
Styrene	ND	ug/Kg	4.3	0.9	0.83	338583	04/24/24	04/24/24	EJB
Bromoform	ND	ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
Isopropylbenzene	ND	ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
1,1,2,2-Tetrachloroethane	ND	ug/Kg ug/Kg	4.3	1.8	0.83	338583	04/24/24	04/24/24	EJB
1,2,3-Trichloropropane	ND	ug/Kg ug/Kg	4.3	1.3	0.83	338583	04/24/24	04/24/24	EJB
				0.6		338583	04/24/24	04/24/24	EJB
Propylbenzene	ND	ug/Kg	4.3		0.83				
Bromobenzene	ND	ug/Kg	4.3	0.9	0.83	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND	ug/Kg	4.3	0.5	0.83	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND	ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND	ug/Kg	4.3	0.5	0.83	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND	ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	ND	ug/Kg		0.6	0.83	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND	ug/Kg	4.3	1.3	0.83	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND	ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND	ug/Kg	4.3	8.0	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND	ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
Naphthalene	ND	ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
1,2,3-Trichlorobenzene	ND	ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
Xylene (total)	ND	ug/Kg	4.3		0.83	338583	04/24/24	04/24/24	EJB
urrogates			Limits						
Dibromofluoromethane	96%	%REC	70-145		0.83	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	106%	%REC	70-145		0.83	338583	04/24/24	04/24/24	EJB
Toluene-d8	96%	%REC	70-145		0.83	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	97%	%REC			0.83	338583	04/24/24	04/24/24	EJB
lethod: EPA 8270C-SIM rep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	10	1.6	1	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND	ug/Kg		1.6	1	338344	04/21/24	04/24/24	HQN
Naphthalene	ND	ug/Kg ug/Kg		3.7	1	338344	04/21/24	04/24/24	HQN
Acenaphthylene	טויו	ug/ng	10	J./	ı	JJ0J44	U7/41/44	UH/44/44	וועוו

506595-006 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
	NB		- 10			200041	0.4/0.4/0.1	0.4/0.4/0.1	
Acenaphthene	ND	ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Fluorene	ND	ug/Kg	10	1.3	1	338344	04/21/24	04/24/24	HQN
Phenanthrene	ND	ug/Kg	10	2.3	1	338344	04/21/24	04/24/24	HQN
Anthracene	ND	ug/Kg	10	1.5	1	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND	ug/Kg	10	3.5	1	338344	04/21/24	04/24/24	HQN
Pyrene	ND	ug/Kg	10	3.8	1	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND	ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Chrysene	ND	ug/Kg	10	1.0	1	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	ND	ug/Kg	10	0.96	1	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND	ug/Kg	10	1.1	1	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND	ug/Kg	10	1.4	1	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND	ug/Kg	10	1.6	1	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND	ug/Kg	10	2.9	1	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	ND	ug/Kg	10	1.7	1	338344	04/21/24	04/24/24	HQN
Surrogates			Limits						
Nitrobenzene-d5	93%	%REC	27-125		10	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	86%	%REC	30-120		10	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	88%	%REC	33-155		10	338344	04/21/24	04/25/24	HQN

Sample ID: RA 3-1 Lab ID: 506595-007 Collected: 04/16/24 12:02

Matrix: Soil Basis: Dry

506595-007 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	4		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B										
Prep Method: EPA 3050B	ND		0.7	0.1	1.0	0.00	000001	0.4/4.0/0.4	0.4/0.4/0.4	ODW
Antimony	ND		mg/Kg	3.1	1.2	0.98	338281	04/19/24	04/21/24	SBW
Arsenic	2.3		mg/Kg	1.0	0.60	0.98	338281	04/19/24	04/21/24	SBW
Barium	11		mg/Kg	1.0	0.36	0.98	338281	04/19/24	04/21/24	SBW
Beryllium	0.080	B,J	mg/Kg	0.51	0.011	0.98	338281	04/19/24	04/21/24	SBW
Cadmium	0.056	J	mg/Kg	0.51	0.047	0.98	338281	04/19/24	04/21/24	SBW
Chromium	10		mg/Kg	1.0	0.12	0.98	338281	04/19/24	04/21/24	SBW
Cobalt	1.4		mg/Kg	0.51	0.28	0.98	338281	04/19/24	04/21/24	SBW
Copper	0.99	J	mg/Kg	1.0	0.21	0.98	338281	04/19/24	04/21/24	SBW
Lead	0.83	J	mg/Kg	1.0	0.39	0.98	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.98	338281	04/19/24	04/21/24	SBW
Nickel	6.9		mg/Kg	1.0	0.17	0.98	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.1	0.86	0.98	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.51	0.16	0.98	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.1	0.89	0.98	338281	04/19/24	04/21/24	SBW
Vanadium	10		mg/Kg	1.0	0.080	0.98	338281	04/19/24	04/21/24	SBW
Zinc	6.7		mg/Kg	5.1	0.38	0.98	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND		mg/Kg	0.16	0.040	1.1	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		1	338322	04/20/24	04/22/24	TJW
DRO C10-C28	ND		mg/Kg	10	3.6	1	338322	04/20/24	04/22/24	TJW
ORO C28-C44	ND		mg/Kg	21	3.6	1	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	125%		%REC	70-130		1	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.3	1.3	1	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.3	1.8	1	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.3	1.1	1	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.3	1.4	<u>·</u>	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.3	1.6	1	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.3	1.4	<u>·</u>	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.3	1.9	<u>'</u>	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Dieldrin	ND		ug/Kg ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
4,4'-DDE	ND		ug/Kg ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Endrin	ND		ug/Kg ug/Kg	5.3	1.7	1	338342	04/21/24	04/23/24	KLR
						1				
Endosulfan II Endosulfan sulfate	ND ND		ug/Kg	5.3 5.3	1.7	1	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR KLR
			ug/Kg							
4,4'-DDD	ND		ug/Kg	5.3	1.2	1	338342	04/21/24	04/23/24	KLR

	A	ilialysis n	esuits	101 5	UUJS	55			
506595-007 Analyte			RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.3	1.8	1	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	11	5.4	1	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	110	16	1	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	53	12	1	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	98%	%REC	23-120		1	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	91%	%REC	24-120		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	53	15	1	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg	53	24	1	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg	53	20	1	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg	53	19	1	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg	53	22	1	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND	ug/Kg	53	7.0	1	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND	ug/Kg	53	26	1	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg	53	17	1	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg	53	14	1	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
Decachlorobiphenyl (PCB)	89%	%REC	19-121		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.3	1.4	0.83	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.3	2.1	0.83	338583	04/24/24	04/24/24	EJB
Freon 12	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
Chloromethane	ND	ug/Kg	4.3	2.0	0.83	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND	ug/Kg	4.3	1.9	0.83	338583	04/24/24	04/24/24	EJB
Bromomethane	ND	ug/Kg	4.3	1.9	0.83	338583	04/24/24	04/24/24	EJB
Chloroethane	ND	ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND	ug/Kg	4.3	1.3	0.83	338583	04/24/24	04/24/24	EJB
Acetone	ND	ug/Kg	87	53	0.83	338583	04/24/24	04/24/24	EJB
Freon 113	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND	ug/Kg	4.3	3.2	0.83	338583	04/24/24	04/24/24	EJB
MTBE	ND	ug/Kg	4.3	0.8	0.83	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
2-Butanone	ND	ug/Kg	87	6.4	0.83	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND	ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND	ug/Kg	4.3	8.0	0.83	338583	04/24/24	04/24/24	EJB
Chloroform	ND	ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
Bromochloromethane	ND	ug/Kg	4.3	1.4	0.83	338583	04/24/24	04/24/24	EJB
1,1,1-Trichloroethane	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
1,1-Dichloropropene	ND	ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride	ND	ug/Kg	4.3	1.3	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane	ND	ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane Benzene		ug/Kg ug/Kg	4.3 4.3	1.0 1.0	0.83	338583 338583	04/24/24 04/24/24	04/24/24 04/24/24	EJB EJB

506595-007 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND		ug/Kg	4.3	2.0	0.83	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND		ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND		ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND		ug/Kg	4.3	1.8	0.83	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND		ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
Toluene	ND		ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND		ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND		ug/Kg	4.3	1.6	0.83	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND		ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND		ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND		ug/Kg	4.3	0.8	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND		ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND		ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND		ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND		ug/Kg	4.3	0.8	0.83	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND		ug/Kg	8.7	1.7	0.83	338583	04/24/24	04/24/24	EJB
o-Xylene	ND		ug/Kg	4.3	0.9	0.83	338583	04/24/24	04/24/24	EJB
Styrene	ND		ug/Kg	4.3	0.9	0.83	338583	04/24/24	04/24/24	EJB
Bromoform	ND		ug/Kg	4.3	0.9	0.83	338583	04/24/24	04/24/24	EJB
Isopropylbenzene	ND		ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
1,1,2,2-Tetrachloroethane	ND		ug/Kg	4.3	1.8	0.83	338583	04/24/24	04/24/24	EJB
					1.3			04/24/24	04/24/24	EJB
1,2,3-Trichloropropane	ND		ug/Kg	4.3		0.83	338583			
Propylbenzene	ND		ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
Bromobenzene	ND		ug/Kg	4.3	0.9	0.83	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND		ug/Kg	4.3	0.5	0.83	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND		ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND		ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND		ug/Kg	4.3	0.5	0.83	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND		ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND		ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	ND		ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND		ug/Kg	4.3	1.3	0.83	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND		ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND		ug/Kg	4.3	8.0	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND		ug/Kg	4.3	0.7	0.83	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.3	1.5	0.83	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND		ug/Kg	4.3	1.1	0.83	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND		ug/Kg	4.3	1.0	0.83	338583	04/24/24	04/24/24	EJB
Naphthalene	ND		ug/Kg	4.3	1.2	0.83	338583	04/24/24	04/24/24	EJB
1,2,3-Trichlorobenzene	ND		ug/Kg	4.3	0.6	0.83	338583	04/24/24	04/24/24	EJB
Xylene (total)	ND		ug/Kg	4.3		0.83	338583	04/24/24	04/24/24	EJB
Surrogates				Limits						
Dibromofluoromethane	95%		%REC	70-145		0.83	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	105%		%REC	70-145		0.83	338583	04/24/24	04/24/24	EJB
Toluene-d8	94%		%REC	70-145		0.83	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	94%		%REC	70-145		0.83	338583	04/24/24	04/24/24	EJB
Method: EPA 8270C-SIM Prep Method: EPA 3546	0170		701120	70 110		0.00	-	0 1/2 1/2 1	0 1/2 1/2 1	
1-Methylnaphthalene	ND		ug/Kg	10	1.6	0.99	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND		ug/Kg	10	1.6	0.99	338344	04/21/24	04/24/24	HQN
Naphthalene	ND		ug/Kg	10	3.7	0.99	338344	04/21/24	04/24/24	HQN
Acenaphthylene	ND		ug/Kg	10	1.6	0.99	338344	04/21/24	04/24/24	HQN

506595-007 Analyte	Result	Qual Un	ts RL	. MDL	DF	Batch	Prepared	Analyzed	Chemist
Acenaphthene	ND	ug/	Kg 10	1.1	0.99	338344	04/21/24	04/24/24	HQN
Fluorene	ND	ug/	<g 10<="" td=""><td>1.3</td><td>0.99</td><td>338344</td><td>04/21/24</td><td>04/24/24</td><td>HQN</td></g>	1.3	0.99	338344	04/21/24	04/24/24	HQN
Phenanthrene	ND	ug/	<g 10<="" td=""><td>2.3</td><td>0.99</td><td>338344</td><td>04/21/24</td><td>04/24/24</td><td>HQN</td></g>	2.3	0.99	338344	04/21/24	04/24/24	HQN
Anthracene	ND	ug/	Kg 10	1.4	0.99	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND	ug/	Kg 10	3.5	0.99	338344	04/21/24	04/24/24	HQN
Pyrene	ND	ug/	Kg 10	3.7	0.99	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND	ug/	Kg 10	1.1	0.99	338344	04/21/24	04/24/24	HQN
Chrysene	ND	ug/	(g 10	0.99	0.99	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	ND	ug/	Kg 10	0.96	0.99	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND	ug/	Kg 10	1.1	0.99	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND	ug/	Kg 10	1.4	0.99	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND	ug/	Kg 10	1.6	0.99	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND	ug/	<g 10<="" td=""><td>2.9</td><td>0.99</td><td>338344</td><td>04/21/24</td><td>04/24/24</td><td>HQN</td></g>	2.9	0.99	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	ND	ug/	<g 10<="" td=""><td>1.7</td><td>0.99</td><td>338344</td><td>04/21/24</td><td>04/24/24</td><td>HQN</td></g>	1.7	0.99	338344	04/21/24	04/24/24	HQN
Surrogates			Limits	;					
Nitrobenzene-d5	85%	%R	EC 27-125)	9.9	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	80%	%R	EC 30-120)	9.9	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	79%	%R	EC 33-155	5	9.9	338344	04/21/24	04/25/24	HQN

Sample ID: RA 4-2 Lab ID: 506595-008 Collected: 04/16/24 12:13

Matrix: Soil Basis: Dry

506595-008 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	9		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B										
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.1	1.3	0.95	338281	04/19/24	04/21/24	SBW
Arsenic	6.8		mg/Kg	1.0	0.62	0.95	338281	04/19/24	04/21/24	SBW
Barium	45		mg/Kg	1.0	0.37	0.95	338281	04/19/24	04/21/24	SBW
Beryllium	0.13	J	mg/Kg	0.52	0.012	0.95	338281	04/19/24	04/21/24	SBW
Cadmium	0.42	J	mg/Kg	0.52	0.048	0.95	338281	04/19/24	04/21/24	SBW
Chromium	21		mg/Kg	1.0	0.13	0.95	338281	04/19/24	04/21/24	SBW
Cobalt	6.0		mg/Kg	0.52	0.28	0.95	338281	04/19/24	04/21/24	SBW
Copper	45		mg/Kg	1.0	0.21	0.95	338281	04/19/24	04/21/24	SBW
Lead	47		mg/Kg	1.0	0.39	0.95	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.2	1.2	0.95	338281	04/19/24	04/21/24	SBW
Nickel	19		mg/Kg	1.0	0.18	0.95	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.1	0.88	0.95	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.52	0.16	0.95	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.1	0.91	0.95	338281	04/19/24	04/21/24	SBW
Vanadium	37		mg/Kg	1.0	0.082	0.95	338281	04/19/24	04/21/24	SBW
Zinc	96		mg/Kg	5.2	0.38	0.95	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	0.050	J	mg/Kg	0.16	0.040	1	338363	04/22/24	04/22/24	KAM
Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	11		0.99	338322	04/20/24	04/22/24	TJW
DRO C10-C28	8.1	J	mg/Kg	11	3.8	0.99	338322	04/20/24	04/22/24	TJW
ORO C28-C44	6.1	J	mg/Kg	22	3.8	0.99	338322	04/20/24	04/22/24	TJW
Surrogates				Limits						
n-Triacontane	119%		%REC	70-130		0.99	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.4	1.3	0.99	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.4	1.8	0.99	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.4	1.1	0.99	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.4	1.5	0.99	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.4	1.6	0.99	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.4	1.4	0.99	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.4	2.0	0.99	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.4	1.6	0.99	338342	04/21/24	04/23/24	KLR
	ND		ug/Kg	5.4	1.6	0.99	338342	04/21/24	04/23/24	KLR
Dieldrin	שוו									
	ND			5.4	1.6	0.99	338342	04/21/24	04/23/24	KLR
Dieldrin			ug/Kg	5.4 5.4	1.6 1.7	0.99	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR KLR
Dieldrin 4,4'-DDE	ND		ug/Kg ug/Kg	5.4		0.99	338342			KLR
Dieldrin 4,4'-DDE Endrin	ND ND		ug/Kg		1.7			04/21/24	04/23/24	

		ilialysis n	CSuitS	101 3	0033	,,			
506595-008 Analyte	Result		RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.4	1.8	0.99	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.4	1.5	0.99	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.4	1.6	0.99	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	11	5.5	0.99	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	110	16	0.99	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	54	12	0.99	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	90%	%REC	23-120		0.99	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	86%	%REC	24-120		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	54	16	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg	54	25	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg	54	20	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg	54	19	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg	54	23	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND	ug/Kg	54	7.1	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND	ug/Kg	54	27	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg	54	18	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg	54	15	0.99	338342	04/21/24	04/23/24	KLR
Surrogates		- 0	Limits						
Decachlorobiphenyl (PCB)	88%	%REC	19-121		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.0	0.6	0.72	338583	04/24/24	04/24/24	EJB
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.0	1.3	0.72	338583	04/24/24	04/24/24	EJB
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.0	1.9	0.72	338583	04/24/24	04/24/24	EJB
Freon 12	ND	ug/Kg	4.0	1.4	0.72	338583	04/24/24	04/24/24	EJB
Chloromethane	ND	ug/Kg	4.0	1.8	0.72	338583	04/24/24	04/24/24	EJB
Vinyl Chloride	ND	ug/Kg	4.0	1.8	0.72	338583	04/24/24	04/24/24	EJB
Bromomethane	ND	ug/Kg	4.0	1.8	0.72	338583	04/24/24	04/24/24	EJB
Chloroethane	ND	ug/Kg	4.0	1.1	0.72	338583	04/24/24	04/24/24	EJB
Trichlorofluoromethane	ND	ug/Kg	4.0	1.1	0.72	338583	04/24/24	04/24/24	EJB
Acetone	ND	ug/Kg	79	48	0.72	338583	04/24/24	04/24/24	EJB
Freon 113	ND	ug/Kg	4.0	0.6	0.72	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethene	ND	ug/Kg	4.0	1.0	0.72	338583	04/24/24	04/24/24	EJB
Methylene Chloride	ND	ug/Kg	4.0	2.9	0.72	338583	04/24/24	04/24/24	EJB
MTBE	ND	ug/Kg	4.0	0.7	0.72	338583	04/24/24	04/24/24	EJB
trans-1,2-Dichloroethene	ND	ug/Kg	4.0	1.0	0.72	338583	04/24/24	04/24/24	EJB
1,1-Dichloroethane	ND	ug/Kg	4.0	1.4	0.72	338583	04/24/24	04/24/24	EJB
2-Butanone	ND	ug/Kg	79	5.8	0.72	338583	04/24/24	04/24/24	EJB
cis-1,2-Dichloroethene	ND	ug/Kg	4.0	1.3	0.72	338583	04/24/24	04/24/24	EJB
2,2-Dichloropropane	ND	ug/Kg	4.0	0.7	0.72	338583	04/24/24	04/24/24	EJB
Chloroform	ND	ug/Kg	4.0	0.6	0.72	338583	04/24/24	04/24/24	EJB
Bromochloromethane	ND	ug/Kg	4.0	1.3	0.72	338583	04/24/24	04/24/24	EJB
1,1,1-Trichloroethane	ND	ug/Kg	4.0	1.0	0.72	338583	04/24/24	04/24/24	EJB
1,1-Dichloropropene	ND	ug/Kg	4.0	1.0	0.72	338583	04/24/24	04/24/24	EJB
Carbon Tetrachloride	ND	ug/Kg	4.0	1.2	0.72	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane	ND	ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
Benzene	ND	ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
Trichloroethene	ND	ug/Kg	4.0	0.7	0.72	338583	04/24/24	04/24/24	EJB
Thomoroethene	עוו	ug/itg	7.0	0.7	0.72	300300	U=1/L=1/L=	U-7/L-7/L-7	

06595-008 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND		ug/Kg	4.0	1.9	0.72	338583	04/24/24	04/24/24	EJB
Bromodichloromethane	ND		ug/Kg	4.0	1.1	0.72	338583	04/24/24	04/24/24	EJB
Dibromomethane	ND		ug/Kg	4.0	1.4	0.72	338583	04/24/24	04/24/24	EJB
4-Methyl-2-Pentanone	ND		ug/Kg	4.0	1.6	0.72	338583	04/24/24	04/24/24	EJB
cis-1,3-Dichloropropene	ND		ug/Kg	4.0	0.7	0.72	338583	04/24/24	04/24/24	EJB
Toluene	ND		ug/Kg	4.0	1.0	0.72	338583	04/24/24	04/24/24	EJB
trans-1,3-Dichloropropene	ND		ug/Kg	4.0	0.6	0.72	338583	04/24/24	04/24/24	EJB
1,1,2-Trichloroethane	ND		ug/Kg	4.0	1.5	0.72	338583	04/24/24	04/24/24	EJB
1,3-Dichloropropane	ND		ug/Kg	4.0	1.1	0.72	338583	04/24/24	04/24/24	EJB
Tetrachloroethene	ND		ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
Dibromochloromethane	ND		ug/Kg	4.0	0.7	0.72	338583	04/24/24	04/24/24	EJB
1,2-Dibromoethane	ND		ug/Kg	4.0	1.0	0.72	338583	04/24/24	04/24/24	EJB
Chlorobenzene	ND		ug/Kg	4.0	0.6	0.72	338583	04/24/24	04/24/24	EJB
1,1,1,2-Tetrachloroethane	ND		ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
Ethylbenzene	ND		ug/Kg	4.0	0.7	0.72	338583	04/24/24	04/24/24	EJB
m,p-Xylenes	ND		ug/Kg	7.9	1.5	0.72	338583	04/24/24	04/24/24	EJB
o-Xylene	ND		ug/Kg	4.0	0.8	0.72	338583	04/24/24	04/24/24	EJB
Styrene	ND		ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
Bromoform	ND		ug/Kg	4.0	0.5	0.72	338583	04/24/24	04/24/24	EJB
Isopropylbenzene	ND		ug/Kg	4.0	0.5	0.72	338583	04/24/24	04/24/24	EJB
1,1,2,2-Tetrachloroethane	ND		ug/Kg	4.0	1.7	0.72	338583	04/24/24	04/24/24	EJB
1,2,3-Trichloropropane	ND		ug/Kg	4.0	1.2	0.72	338583	04/24/24	04/24/24	EJB
Propylbenzene	ND		ug/Kg	4.0	0.6	0.72	338583	04/24/24	04/24/24	EJB
Bromobenzene	ND		ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
1,3,5-Trimethylbenzene	ND		ug/Kg	4.0	0.5	0.72	338583	04/24/24	04/24/24	EJB
2-Chlorotoluene	ND		ug/Kg	4.0	1.0	0.72	338583	04/24/24	04/24/24	EJB
4-Chlorotoluene	ND		ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
tert-Butylbenzene	ND		ug/Kg	4.0	0.5	0.72	338583	04/24/24	04/24/24	EJB
1,2,4-Trimethylbenzene	ND		ug/Kg	4.0	0.6	0.72	338583	04/24/24	04/24/24	EJB
sec-Butylbenzene	ND		ug/Kg	4.0	0.5	0.72	338583	04/24/24	04/24/24	EJB
para-Isopropyl Toluene	ND		ug/Kg	4.0	0.5	0.72	338583	04/24/24	04/24/24	EJB
1,3-Dichlorobenzene	ND		ug/Kg	4.0	1.1	0.72	338583	04/24/24	04/24/24	EJB
1,4-Dichlorobenzene	ND		ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
n-Butylbenzene	ND		ug/Kg ug/Kg	4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
1,2-Dichlorobenzene	ND		ug/Kg ug/Kg	4.0	0.7	0.72	338583	04/24/24	04/24/24	EJB
1,2-Dibromo-3-Chloropropane	ND		ug/Kg ug/Kg	4.0	1.4	0.72	338583	04/24/24	04/24/24	EJB
1,2,4-Trichlorobenzene	ND		ug/Kg ug/Kg	4.0	1.4	0.72	338583	04/24/24	04/24/24	EJB
Hexachlorobutadiene	ND			4.0	0.9	0.72	338583	04/24/24	04/24/24	EJB
	ND		ug/Kg ug/Kg	4.0		0.72	338583	04/24/24	04/24/24	EJB
Naphthalene 1,2,3-Trichlorobenzene	ND				0.5	0.72	338583	04/24/24	04/24/24	
Xylene (total)			ug/Kg	4.0	0.5	0.72	338583		04/24/24	EJB
	ND		ug/Kg	4.0		0.72	330303	04/24/24	04/24/24	EJB
urrogates	050/		0/ DEO	Limits		0.70	000500	04/04/04	04/04/04	
Dibromofluoromethane	95%		%REC	70-145		0.72	338583	04/24/24	04/24/24	EJB
1,2-Dichloroethane-d4	109%		%REC	70-145		0.72	338583	04/24/24	04/24/24	EJB
Toluene-d8	98%		%REC	70-145		0.72	338583	04/24/24	04/24/24	EJB
Bromofluorobenzene	101%		%REC	70-145		0.72	338583	04/24/24	04/24/24	EJB
lethod: EPA 8270C-SIM rep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	22	6.6	2	338344	04/21/24	04/26/24	HQN
2-Methylnaphthalene	10	J	ug/Kg	22	9.5	2	338344	04/21/24	04/26/24	HQN
Naphthalene	ND		ug/Kg	22	7.8	2	338344	04/21/24	04/26/24	HQN

506595-008 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
A 1.11	ND		///		7.0		000044	0.4/0.4/0.4	0.4/00/0.4	HON
Acenaphthene	ND		ug/Kg	22	7.3	2	338344	04/21/24	04/26/24	HQN
Fluorene	ND		ug/Kg	22	5.9	2	338344	04/21/24	04/26/24	HQN
Phenanthrene	64		ug/Kg	22	7.6	2	338344	04/21/24	04/26/24	HQN
Anthracene	9.7	J	ug/Kg	22	7.4	2	338344	04/21/24	04/26/24	HQN
Fluoranthene	35		ug/Kg	22	7.3	2	338344	04/21/24	04/26/24	HQN
Pyrene	54		ug/Kg	22	7.9	2	338344	04/21/24	04/26/24	HQN
Benzo(a)anthracene	36		ug/Kg	22	6.1	2	338344	04/21/24	04/26/24	HQN
Chrysene	77		ug/Kg	22	5.4	2	338344	04/21/24	04/26/24	HQN
Benzo(b)fluoranthene	36		ug/Kg	22	7.0	2	338344	04/21/24	04/26/24	HQN
Benzo(k)fluoranthene	11	J	ug/Kg	22	7.8	2	338344	04/21/24	04/26/24	HQN
Benzo(a)pyrene	28		ug/Kg	22	4.3	2	338344	04/21/24	04/26/24	HQN
Indeno(1,2,3-cd)pyrene	17	J	ug/Kg	22	6.6	2	338344	04/21/24	04/26/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	22	9.9	2	338344	04/21/24	04/26/24	HQN
Benzo(g,h,i)perylene	24		ug/Kg	22	7.9	2	338344	04/21/24	04/26/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	86%		%REC	27-125		9.9	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	81%		%REC	30-120		9.9	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	77%		%REC	33-155		9.9	338344	04/21/24	04/25/24	HQN

Sample ID: PC 1-3.5 Lab ID: 506595-009 Collected: 04/16/24 10:15

Matrix: Soil Basis: Dry

506595-009 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	6		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B										
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.1	1.3	0.97	338281	04/19/24	04/21/24	SBW
Arsenic	2.7		mg/Kg	1.0	0.61	0.97	338281	04/19/24	04/21/24	SBW
Barium	42		mg/Kg	1.0	0.37	0.97	338281	04/19/24	04/21/24	SBW
Beryllium	0.21	J	mg/Kg	0.52	0.011	0.97	338281	04/19/24	04/21/24	SBW
Cadmium	0.056	J	mg/Kg	0.52	0.047	0.97	338281	04/19/24	04/21/24	SBW
Chromium	12		mg/Kg	1.0	0.12	0.97	338281	04/19/24	04/21/24	SBW
Cobalt	2.0		mg/Kg	0.52	0.28	0.97	338281	04/19/24	04/21/24	SBW
Copper	1.5		mg/Kg	1.0	0.21	0.97	338281	04/19/24	04/21/24	SBW
Lead	1.4		mg/Kg	1.0	0.39	0.97	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.97	338281	04/19/24	04/21/24	SBW
Nickel	9.3		mg/Kg	1.0	0.18	0.97	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.1	0.87	0.97	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.52	0.16	0.97	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.1	0.90	0.97	338281	04/19/24	04/21/24	SBW
Vanadium	13		mg/Kg	1.0	0.081	0.97	338281	04/19/24	04/21/24	SBW
Zinc	9.9		mg/Kg	5.2	0.38	0.97	338281	04/19/24	04/21/24	SBW
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 3580M	ND		mg/Kg	0.16	0.041	1.1	338363	04/22/24	04/22/24	KAM
Prep Method: EPA 3580M GRO C6-C12	ND		mg/Kg	11		0.99	338322	04/20/24	04/22/24	TJW
DRO C10-C28	ND		mg/Kg	11	3.7	0.99	338322	04/20/24	04/22/24	TJW
ORO C28-C44	ND		mg/Kg	21	3.7	0.99	338322	04/20/24	04/22/24	TJW
Surrogates	ND		mg/rxg	Limits	3.7	0.55	330322	04/20/24	04/22/24	1000
n-Triacontane	119%		%REC	70-130		0.99	338322	04/20/24	04/22/24	TJW
Method: EPA 8081A Prep Method: EPA 3546						0.55			<u> </u>	
alpha-BHC	ND		ug/Kg	5.4	1.3	1	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.4	1.8	1	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.4	1.1	1	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.4	1.5	1	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.4	1.6	1	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.4	1.4	1	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.4	2.0	1	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.4	1.5	1	338342	04/21/24	04/23/24	KLR
Dieldrin	ND		ug/Kg	5.4	1.6	1	338342	04/21/24	04/23/24	KLR
4,4'-DDE	ND		ug/Kg	5.4	1.6	1	338342	04/21/24	04/23/24	KLR
Endrin	ND		ug/Kg	5.4	1.7	1	338342	04/21/24	04/23/24	KLR
Endosulfan II	ND		ug/Kg	5.4	1.7	1	338342	04/21/24	04/23/24	KLR
Endosulfan sulfate	ND		ug/Kg	5.4	1.8	1	338342	04/21/24	04/23/24	KLR
4,4'-DDD	ND		ug/Kg	5.4	1.2		338342	04/21/24	04/23/24	KLR

		anaiysis r			UUS				
506595-009 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
Endrin aldehyde	ND	ug/Kg		1.8	1	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.4	1.5	1	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.4	1.6	1	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	11	5.5	1	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	110	16	1	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	54	12	1	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	81%	%REC	23-120		1	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	81%	%REC	24-120		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	54	16	1	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg		25	1	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg		20	1	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg		19	1	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg		23	1	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND	ug/Kg		7.1	1	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND	ug/Kg		27	1	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg		18	1	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg		15	1	338342	04/21/24	04/23/24	KLR
Surrogates	110	ug/itg	Limits			000012	0 1/2 1/2 1	0 1/20/2 1	TKEIT
Decachlorobiphenyl (PCB)	85%	%REC			1	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.6	1.1	0.86	338712	04/25/24	04/25/24	HMN
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.6	1.7	0.86	338712	04/25/24	04/25/24	HMN
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.6	0.9	0.86	338712	04/25/24	04/25/24	HMN
Freon 12	ND	ug/Kg	4.6	0.9	0.86	338712	04/25/24	04/25/24	HMN
Chloromethane	ND	ug/Kg	4.6	0.8	0.86	338712	04/25/24	04/25/24	HMN
Vinyl Chloride	ND	ug/Kg	4.6	0.9	0.86	338712	04/25/24	04/25/24	HMN
Bromomethane	ND	ug/Kg	4.6	1.0	0.86	338712	04/25/24	04/25/24	HMN
Chloroethane	ND	ug/Kg	4.6	2.2	0.86	338712	04/25/24	04/25/24	HMN
Trichlorofluoromethane	ND	ug/Kg	4.6	0.8	0.86	338712	04/25/24	04/25/24	HMN
Acetone	ND	ug/Kg	92	29	0.86	338712	04/25/24	04/25/24	HMN
Freon 113	ND	ug/Kg		0.7	0.86	338712	04/25/24	04/25/24	HMN
1,1-Dichloroethene	ND	ug/Kg		1.0	0.86	338712	04/25/24	04/25/24	HMN
Methylene Chloride	ND	ug/Kg		3.1	0.86	338712	04/25/24	04/25/24	HMN
MTBE	ND	ug/Kg		0.9	0.86	338712	04/25/24	04/25/24	HMN
trans-1,2-Dichloroethene	ND	ug/Kg		1.0	0.86	338712	04/25/24	04/25/24	HMN
1,1-Dichloroethane	ND	ug/Kg		0.8	0.86	338712	04/25/24	04/25/24	HMN
2-Butanone	ND	ug/Kg		3.9	0.86	338712	04/25/24	04/25/24	HMN
cis-1,2-Dichloroethene	ND	ug/Kg		0.7	0.86	338712	04/25/24	04/25/24	HMN
2,2-Dichloropropane	ND	ug/Kg		2.3	0.86	338712	04/25/24	04/25/24	HMN
Chloroform	ND	ug/Kg		0.9	0.86	338712	04/25/24	04/25/24	HMN
Bromochloromethane	ND	ug/Kg		0.4	0.86	338712	04/25/24	04/25/24	HMN
1,1,1-Trichloroethane	ND	ug/Kg		1.2	0.86	338712	04/25/24	04/25/24	HMN
1,1-Dichloropropene	ND	ug/Kg ug/Kg		0.7	0.86	338712	04/25/24	04/25/24	HMN
Carbon Tetrachloride	ND	ug/Kg ug/Kg		1.1	0.86	338712	04/25/24	04/25/24	HMN
1,2-Dichloroethane	ND			0.9	0.86	338712	04/25/24	04/25/24	HMN
The state of the s		ug/Kg							
Benzene Trichloroethene	ND	ug/Kg		0.5	0.86	338712	04/25/24	04/25/24	HMN
Trichioroethene	ND	ug/Kg	4.6	0.6	0.86	338712	04/25/24	04/25/24	HMN

ND ND	ug/Kg	4.6	0.7	0.86	338712	04/05/04	0.4/05/04	
ND			0.7	0.00	330/12	04/25/24	04/25/24	HMN
	ug/Kg	4.6	1.0	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	0.4	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	1.5	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	1.0	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	0.9	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	1.3	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	0.4	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	0.6	0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	4.6	0.5	0.86	338712	04/25/24	04/25/24	HMN
ND		4.6	0.5	0.86	338712	04/25/24	04/25/24	HMN
ND		4.6	0.6	0.86	338712	04/25/24	04/25/24	HMN
			0.4					HMN
			0.7					HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN
								HMN HMN
								HMN
								HMN
								HMN
								HMN
								HMN
			0.7					HMN
ND	ug/Kg			0.86	338712	04/25/24	04/25/24	HMN
	*/550						0.1/0=/0.1	
								HMN
								HMN
								HMN
101%	%REC	70-145		0.86	338712	04/25/24	04/25/24	HMN
ND	ug/Kg	11	1.6	0.99	338344	04/21/24	04/24/24	HQN
ND	ug/Kg	11	1.6	0.99	338344	04/21/24	04/24/24	HQN
ND	ug/Kg	11	3.8	0.99	338344	04/21/24	04/24/24	HQN
	ND ND ND ND ND ND ND ND	ND ug/Kg ND ug/Kg <td>ND</td> <td>ND</td> <td> ND</td> <td> ND</td> <td>ND ug/Kg 4.6 1.0 0.86 338712 04/25/24 ND ug/Kg 4.6 0.9 0.86 338712 04/25/24 ND ug/Kg 4.6 1.3 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.5 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 ND ug/Kg 4.6 0.7 0.86 338712 04/25/24 ND ug/Kg 4.6 0.7 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0</td> <td>ND ug/Kg 4.6 1.0 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.9 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.5 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338</td>	ND	ND	ND	ND	ND ug/Kg 4.6 1.0 0.86 338712 04/25/24 ND ug/Kg 4.6 0.9 0.86 338712 04/25/24 ND ug/Kg 4.6 1.3 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.5 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 ND ug/Kg 4.6 0.7 0.86 338712 04/25/24 ND ug/Kg 4.6 0.7 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 ND ug/Kg 4.6 0.6 0	ND ug/Kg 4.6 1.0 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.9 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.5 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.6 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.3 0.86 338712 04/25/24 04/25/24 ND ug/Kg 4.6 0.4 0.86 338

506595-009 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Acenaphthene	ND	ug/Kg	11	1.1	0.99	338344	04/21/24	04/24/24	HQN
Fluorene	ND	ug/Kg	11	1.3	0.99	338344	04/21/24	04/24/24	HQN
Phenanthrene	ND	ug/Kg	11	2.3	0.99	338344	04/21/24	04/24/24	HQN
Anthracene	ND	ug/Kg	11	1.5	0.99	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND	ug/Kg	11	3.5	0.99	338344	04/21/24	04/24/24	HQN
Pyrene	ND	ug/Kg	11	3.8	0.99	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND	ug/Kg	11	1.1	0.99	338344	04/21/24	04/24/24	HQN
Chrysene	ND	ug/Kg	11	1.0	0.99	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	ND	ug/Kg	11	0.98	0.99	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND	ug/Kg	11	1.1	0.99	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND	ug/Kg	11	1.4	0.99	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND	ug/Kg	11	1.6	0.99	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND	ug/Kg	11	3.0	0.99	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	ND	ug/Kg	11	1.7	0.99	338344	04/21/24	04/24/24	HQN
Surrogates			Limits						
Nitrobenzene-d5	98%	%REC	27-125		9.9	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	84%	%REC	30-120		9.9	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	83%	%REC	33-155		9.9	338344	04/21/24	04/25/24	HQN

Sample ID: PC 2-1.5 Lab ID: 506595-010 Collected: 04/16/24 10:27

Matrix: Soil Basis: Dry

506595-010 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216										
Prep Method: METHOD	5		%	- 4		4	338380	04/22/24	04/23/24	ARM
Moisture, Percent	<u> </u>		70	ı		!	330300	04/22/24	04/23/24	ARIVI
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.1	1.2	0.97	338281	04/19/24	04/21/24	SBW
Arsenic	2.7		mg/Kg	1.0	0.60	0.97	338281	04/19/24	04/21/24	SBW
Barium	34		mg/Kg	1.0	0.36	0.97	338281	04/19/24	04/21/24	SBW
Beryllium	0.17	J	mg/Kg	0.51	0.011	0.97	338281	04/19/24	04/21/24	SBW
Cadmium	0.13	J	mg/Kg	0.51	0.047	0.97	338281	04/19/24	04/21/24	SBW
Chromium	13		mg/Kg	1.0	0.12	0.97	338281	04/19/24	04/21/24	SBW
Cobalt	2.1		mg/Kg	0.51	0.28	0.97	338281	04/19/24	04/21/24	SBW
Copper	11		mg/Kg	1.0	0.21	0.97	338281	04/19/24	04/21/24	SBW
Lead	26		mg/Kg	1.0	0.39	0.97	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.97	338281	04/19/24	04/21/24	SBW
Nickel	8.6		mg/Kg	1.0	0.17	0.97	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.1	0.86	0.97	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.51	0.16	0.97	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.1	0.89	0.97	338281	04/19/24	04/21/24	SBW
Vanadium	17		mg/Kg	1.0	0.080	0.97	338281	04/19/24	04/21/24	SBW
Zinc	32		mg/Kg	5.1	0.38	0.97	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND		mg/Kg	0.17	0.042	1.1	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	10		0.99	338322	04/20/24	04/23/24	TJW
DRO C10-C28	4.1	J	mg/Kg	10	3.6	0.99	338322	04/20/24	04/23/24	TJW
ORO C28-C44	4.1	J	mg/Kg	21	3.6	0.99	338322	04/20/24	04/23/24	TJW
Surrogates				Limits						
n-Triacontane	124%		%REC	70-130		0.99	338322	04/20/24	04/23/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.3	1.3	1	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.3	1.8	1	338342	04/21/24	04/23/24	KLR
gamma-BHC	ND		ug/Kg	5.3	1.1	1	338342	04/21/24	04/23/24	KLR
delta-BHC	ND		ug/Kg	5.3	1.4	1	338342	04/21/24	04/23/24	KLR
Heptachlor	ND		ug/Kg	5.3	1.6	1	338342	04/21/24	04/23/24	KLR
Aldrin	ND		ug/Kg	5.3	1.4	1	338342	04/21/24	04/23/24	KLR
Heptachlor epoxide	ND		ug/Kg	5.3	1.9	1	338342	04/21/24	04/23/24	KLR
Endosulfan I	ND		ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Dieldrin	ND		ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
4,4'-DDE	ND		ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Endrin	ND		ug/Kg	5.3	1.6	1	338342	04/21/24	04/23/24	KLR
Endosulfan II	ND		ug/Kg	5.3	1.6	1	338342	04/21/24	04/23/24	KLR
Endosulfan sulfate	ND		ug/Kg	5.3	1.7	1	338342	04/21/24	04/23/24	KLR
4,4'-DDD	ND		ug/Kg	5.3	1.2	1	338342	04/21/24	04/23/24	KLR

506595-010 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND		ug/Kg	5.3	1.8	1	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND		ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
4,4'-DDT	4.3	J	ug/Kg	5.3	1.5	1	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND		ug/Kg	11	5.3	1	338342	04/21/24	04/23/24	KLR
Toxaphene	ND		ug/Kg	110	16	1	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND		ug/Kg	53	11	1	338342	04/21/24	04/23/24	KLR
Surrogates				Limits						
TCMX	85%		%REC	23-120		1	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	89%		%REC	24-120		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8082 Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	53	15	1	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND		ug/Kg	53	24	1	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND		ug/Kg	53	20	1	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND		ug/Kg	53	19	1	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND		ug/Kg	53	22	1	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND		ug/Kg	53	6.9	1	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND		ug/Kg	53	26	1	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND		ug/Kg	53	17	1	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND		ug/Kg	53	14	1	338342	04/21/24	04/23/24	KLR
Surrogates				Limits						
Decachlorobiphenyl (PCB)	89%		%REC	19-121		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035										
3-Chloropropene	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN
cis-1,4-Dichloro-2-butene	ND		ug/Kg	4.3	1.4	0.83	338690	04/25/24	04/25/24	HMN
trans-1,4-Dichloro-2-butene	ND		ug/Kg	4.3	2.1	0.83	338690	04/25/24	04/25/24	HMN
Freon 12	ND		ug/Kg	4.3	1.5	0.83	338690	04/25/24	04/25/24	HMN
Chloromethane	ND		ug/Kg	4.3	2.0	0.83	338690	04/25/24	04/25/24	HMN
Vinyl Chloride	ND		ug/Kg	4.3	1.9	0.83	338690	04/25/24	04/25/24	HMN
Bromomethane	ND		ug/Kg	4.3	2.0	0.83	338690	04/25/24	04/25/24	HMN
Chloroethane	ND		ug/Kg	4.3	1.2	0.83	338690	04/25/24	04/25/24	HMN
Trichlorofluoromethane	ND		ug/Kg	4.3	1.3	0.83	338690	04/25/24	04/25/24	HMN
Acetone	71	J	ug/Kg	87	53	0.83	338690	04/25/24	04/25/24	HMN
Freon 113	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethene	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
Methylene Chloride	ND		ug/Kg	4.3	3.2	0.83	338690	04/25/24	04/25/24	HMN
MTBE	ND		ug/Kg	4.3	0.8	0.83	338690	04/25/24	04/25/24	HMN
trans-1,2-Dichloroethene	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethane	ND		ug/Kg	4.3	1.5	0.83	338690	04/25/24	04/25/24	HMN
2-Butanone	7.3	J	ug/Kg	87	6.4	0.83	338690	04/25/24	04/25/24	HMN
cis-1,2-Dichloroethene	ND		ug/Kg	4.3	1.5	0.83	338690	04/25/24	04/25/24	HMN
2,2-Dichloropropane	ND		ug/Kg	4.3	0.8	0.83	338690	04/25/24	04/25/24	HMN
Chloroform	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN
Bromochloromethane	ND		ug/Kg	4.3	1.4	0.83	338690	04/25/24	04/25/24	HMN
1,1,1-Trichloroethane	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
1,1-Dichloropropene	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
Carbon Tetrachloride	ND		ug/Kg	4.3	1.3	0.83	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane	ND		ug/Kg	4.3	1.0	0.83	338690	04/25/24	04/25/24	HMN
Benzene	ND		ug/Kg	4.3	1.0	0.83	338690	04/25/24	04/25/24	HMN
Trichloroethene	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN

506595-010 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
1,2-Dichloropropane	ND		ug/Kg	4.3	2.0	0.83	338690	04/25/24	04/25/24	HMN
Bromodichloromethane	ND		ug/Kg	4.3	1.2	0.83	338690	04/25/24	04/25/24	HMN
Dibromomethane	ND		ug/Kg	4.3	1.5	0.83	338690	04/25/24	04/25/24	HMN
4-Methyl-2-Pentanone	ND		ug/Kg	4.3	1.8	0.83	338690	04/25/24	04/25/24	HMN
cis-1,3-Dichloropropene	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN
Toluene	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
trans-1,3-Dichloropropene	ND		ug/Kg	4.3	0.6	0.83	338690	04/25/24	04/25/24	HMN
1,1,2-Trichloroethane	ND		ug/Kg	4.3	1.6	0.83	338690	04/25/24	04/25/24	HMN
1,3-Dichloropropane	ND		ug/Kg	4.3	1.2	0.83	338690	04/25/24	04/25/24	HMN
Tetrachloroethene	ND		ug/Kg	4.3	1.0	0.83	338690	04/25/24	04/25/24	HMN
Dibromochloromethane	ND		ug/Kg	4.3	0.8	0.83	338690	04/25/24	04/25/24	HMN
1,2-Dibromoethane	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
Chlorobenzene	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	4.3	1.0	0.83	338690	04/25/24	04/25/24	HMN
Ethylbenzene	ND			4.3	0.8	0.83	338690	04/25/24	04/25/24	HMN
-			ug/Kg							
m,p-Xylenes	ND		ug/Kg	8.7	1.7	0.83	338690	04/25/24	04/25/24	HMN
o-Xylene	ND		ug/Kg	4.3	0.9	0.83	338690	04/25/24	04/25/24	HMN
Styrene	ND		ug/Kg	4.3	0.9	0.83	338690	04/25/24	04/25/24	HMN
Bromoform	ND		ug/Kg	4.3	0.6	0.83	338690	04/25/24	04/25/24	HMN
Isopropylbenzene	ND		ug/Kg	4.3	0.6	0.83	338690	04/25/24	04/25/24	HMN
1,1,2,2-Tetrachloroethane	ND		ug/Kg	4.3	1.8	0.83	338690	04/25/24	04/25/24	HMN
1,2,3-Trichloropropane	ND		ug/Kg	4.3	1.3	0.83	338690	04/25/24	04/25/24	HMN
Propylbenzene	ND		ug/Kg	4.3	0.6	0.83	338690	04/25/24	04/25/24	HMN
Bromobenzene	ND		ug/Kg	4.3	0.9	0.83	338690	04/25/24	04/25/24	HMN
1,3,5-Trimethylbenzene	ND		ug/Kg	4.3	0.5	0.83	338690	04/25/24	04/25/24	HMN
2-Chlorotoluene	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
4-Chlorotoluene	ND		ug/Kg	4.3	1.0	0.83	338690	04/25/24	04/25/24	HMN
tert-Butylbenzene	ND		ug/Kg	4.3	0.5	0.83	338690	04/25/24	04/25/24	HMN
1,2,4-Trimethylbenzene	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN
sec-Butylbenzene	ND		ug/Kg	4.3	0.6	0.83	338690	04/25/24	04/25/24	HMN
para-Isopropyl Toluene	1.7	J	ug/Kg	4.3	0.6	0.83	338690	04/25/24	04/25/24	HMN
1,3-Dichlorobenzene	ND		ug/Kg	4.3	1.3	0.83	338690	04/25/24	04/25/24	HMN
1,4-Dichlorobenzene	ND		ug/Kg	4.3	1.0	0.83	338690	04/25/24	04/25/24	HMN
n-Butylbenzene	ND		ug/Kg	4.3	0.8	0.83	338690	04/25/24	04/25/24	HMN
1,2-Dichlorobenzene	ND		ug/Kg	4.3	0.7	0.83	338690	04/25/24	04/25/24	HMN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	4.3	1.5	0.83	338690	04/25/24	04/25/24	HMN
1,2,4-Trichlorobenzene	ND		ug/Kg	4.3	1.1	0.83	338690	04/25/24	04/25/24	HMN
Hexachlorobutadiene	ND		ug/Kg	4.3	1.0	0.83	338690	04/25/24	04/25/24	HMN
Naphthalene	ND		ug/Kg	4.3	1.2	0.83	338690	04/25/24	04/25/24	HMN
1,2,3-Trichlorobenzene	ND			4.3	0.6	0.83	338690	04/25/24	04/25/24	HMN
			ug/Kg		0.6		338690			
Xylene (total)	ND		ug/Kg	4.3		0.83	338690	04/25/24	04/25/24	HMN
Surrogates	000/		0/ DE0	Limits		0.00	000000	0.4/05/0.4	0.4/05/0.4	
Dibromofluoromethane	98%		%REC	70-145		0.83	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane-d4	110%		%REC	70-145		0.83	338690	04/25/24	04/25/24	HMN
Toluene-d8	96%		%REC	70-145		0.83	338690	04/25/24	04/25/24	HMN
Bromofluorobenzene	98%		%REC	70-145		0.83	338690	04/25/24	04/25/24	HMN
Method: EPA 8270C-SIM Prep Method: EPA 3546										
1-Methylnaphthalene	ND		ug/Kg	11	1.6	1	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND		ug/Kg	11	1.6	1	338344	04/21/24	04/24/24	HQN
Naphthalene	ND		ug/Kg	11	3.8	1	338344	04/21/24	04/24/24	HQN
Acenaphthylene	ND		- 3 9			-	338344			

506595-010 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Acenaphthene	ND		ug/Kg	11	1.1	1	338344	04/21/24	04/24/24	HQN
Fluorene	ND		ug/Kg	11	1.3	1	338344	04/21/24	04/24/24	HQN
Phenanthrene	7.3	J	ug/Kg	11	2.3	1	338344	04/21/24	04/24/24	HQN
Anthracene	1.5	J	ug/Kg	11	1.5	1	338344	04/21/24	04/24/24	HQN
Fluoranthene	9.6	J	ug/Kg	11	3.6	1	338344	04/21/24	04/24/24	HQN
Pyrene	9.4	J	ug/Kg	11	3.8	1	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	4.0	J	ug/Kg	11	1.1	1	338344	04/21/24	04/24/24	HQN
Chrysene	6.3	J	ug/Kg	11	1.0	1	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	7.4	J	ug/Kg	11	0.98	1	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	2.9	J	ug/Kg	11	1.1	1	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	4.4	J	ug/Kg	11	1.4	1	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	4.5	J,b	ug/Kg	11	1.6	1	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	11	3.0	1	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	7.1	J,b	ug/Kg	11	1.7	1	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	74%		%REC	27-125		10	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	74%		%REC	30-120		10	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	75%		%REC	33-155		10	338344	04/21/24	04/25/24	HQN

Sample ID: PC 3-2 Lab ID: 506595-011 Collected: 04/16/24 10:43

Matrix: Soil Basis: Dry

506595-011 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	9		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.2	1.3	0.97	338281	04/19/24	04/21/24	SBW
Arsenic	2.0		mg/Kg	1.1	0.63	0.97	338281	04/19/24	04/21/24	SBW
Barium	24		mg/Kg	1.1	0.38	0.97	338281	04/19/24	04/21/24	SBW
Beryllium	0.10	B,J	mg/Kg	0.53	0.012	0.97	338281	04/19/24	04/21/24	SBW
Cadmium	0.17	J	mg/Kg	0.53	0.049	0.97	338281	04/19/24	04/21/24	SBW
Chromium	7.9		mg/Kg	1.1	0.13	0.97	338281	04/19/24	04/21/24	SBW
Cobalt	2.6		mg/Kg	0.53	0.29	0.97	338281	04/19/24	04/21/24	SBW
Copper	58		mg/Kg	1.1	0.22	0.97	338281	04/19/24	04/21/24	SBW
Lead	14		mg/Kg	1.1	0.40	0.97	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.2	1.2	0.97	338281	04/19/24	04/21/24	SBW
Nickel	5.7		mg/Kg	1.1	0.18	0.97	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.2	0.90	0.97	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.53	0.16	0.97	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.2	0.93	0.97	338281	04/19/24	04/21/24	SBW
Vanadium	15		mg/Kg	1.1	0.084	0.97	338281	04/19/24	04/21/24	SBW
Zinc	24		mg/Kg	5.3	0.39	0.97	338281	04/19/24	04/21/24	SBW
Prep Method: METHOD Mercury Method: EPA 8015M Prep Method: EPA 2590M	ND		mg/Kg	0.17	0.042	1.1	338363	04/22/24	04/22/24	KAM
Prep Method: EPA 3580M GRO C6-C12	ND		mg/Kg	11		1	338322	04/20/24	04/23/24	TJW
DRO C10-C28	ND		mg/Kg	11	3.8	1	338322	04/20/24	04/23/24	TJW
ORO C28-C44	ND		mg/Kg	22	3.8	1	338322	04/20/24	04/23/24	TJW
Surrogates	ND		ilig/ixg	Limits	3.0	'	330322	04/20/24	04/23/24	1000
n-Triacontane	124%		%REC	70-130		1	338322	04/20/24	04/23/24	TJW
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND						338342	04/21/24	04/23/24	KLR
aipiia Bi io	ND		ug/Kg	5.6	1.4	1	JJ0J4Z	04/21/24	04/23/24	
beta-BHC	ND		ug/Kg ug/Kg	5.6 5.6	1.4 1.9	1	338342	04/21/24	04/23/24	KLR
beta-BHC	ND		ug/Kg	5.6	1.9	1	338342	04/21/24	04/23/24	KLR
beta-BHC gamma-BHC	ND ND		ug/Kg ug/Kg	5.6 5.6	1.9 1.2	1	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR KLR
beta-BHC gamma-BHC delta-BHC	ND ND ND		ug/Kg ug/Kg ug/Kg	5.6 5.6 5.6	1.9 1.2 1.5	1	338342 338342 338342	04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24	KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.6 5.6 5.6 5.6	1.9 1.2 1.5	1	338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin	ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.6 5.6 5.6 5.6 5.6	1.9 1.2 1.5 1.7 1.4	1	338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide	ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.6 5.6 5.6 5.6 5.6 5.6	1.9 1.2 1.5 1.7 1.4 2.0	1 1 1 1 1 1	338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I	ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.6 5.6 5.6 5.6 5.6 5.6 5.6	1.9 1.2 1.5 1.7 1.4 2.0	1 1 1 1 1 1	338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	ND ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	1.9 1.2 1.5 1.7 1.4 2.0 1.6	1 1 1 1 1 1	338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE	ND N		ug/Kg	5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	1.9 1.2 1.5 1.7 1.4 2.0 1.6 1.6	1 1 1 1 1 1 1 1 1 1	338342 338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	ND N		ug/Kg	5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	1.9 1.2 1.5 1.7 1.4 2.0 1.6 1.6 1.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	338342 338342 338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR

	_	ilialysis n	icsuits	101 5		,5			
506595-011 Analyte	Result		RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.6	1.9	1	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND	ug/Kg	5.6	1.6	1	338342	04/21/24	04/23/24	KLR
4,4'-DDT	ND	ug/Kg	5.6	1.6	1	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND	ug/Kg	11	5.7	1	338342	04/21/24	04/23/24	KLR
Toxaphene	ND	ug/Kg	110	17	1	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND	ug/Kg	56	12	1	338342	04/21/24	04/23/24	KLR
Surrogates			Limits						
TCMX	93%	%REC	23-120		1	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	93%	%REC	24-120		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8082									
Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	56	16	1	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND	ug/Kg	56	25	1	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND	ug/Kg	56	21	1	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND	ug/Kg	56	20	1	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND	ug/Kg	56	24	1	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND	ug/Kg	56	7.4	1	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND	ug/Kg	56	27	1	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND	ug/Kg	56	18	1	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND	ug/Kg	56	15	<u> </u>	338342	04/21/24	04/23/24	KLR
Surrogates	- 115	49,119	Limits				0 1/2 1/2 1	0 1/20/2 1	
Decachlorobiphenyl (PCB)	92%	%REC	19-121		1	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.1	0.6	0.74	338690	04/25/24	04/25/24	HMN
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.1	1.3	0.74	338690	04/25/24	04/25/24	HMN
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.1	2.0	0.74	338690	04/25/24	04/25/24	HMN
Freon 12	ND	ug/Kg	4.1	1.4	0.74	338690	04/25/24	04/25/24	HMN
Chloromethane	ND	ug/Kg	4.1	1.9	0.74	338690	04/25/24	04/25/24	HMN
Vinyl Chloride	ND	ug/Kg	4.1	1.8	0.74	338690	04/25/24	04/25/24	HMN
Bromomethane	ND	ug/Kg	4.1	1.8	0.74	338690	04/25/24	04/25/24	HMN
Chloroethane	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
Trichlorofluoromethane	ND	ug/Kg	4.1	1.2	0.74	338690	04/25/24	04/25/24	HMN
Acetone	120	ug/Kg	81	49	0.74	338690	04/25/24	04/25/24	HMN
Freon 113	ND	ug/Kg	4.1	0.6	0.74	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethene	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
Methylene Chloride	ND	ug/Kg	4.1	3.0	0.74	338690	04/25/24	04/25/24	HMN
MTBE	ND	ug/Kg	4.1	0.8	0.74	338690	04/25/24	04/25/24	HMN
trans-1,2-Dichloroethene	ND	ug/Kg	4.1	1.0	0.74	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethane	ND	ug/Kg	4.1	1.4	0.74	338690	04/25/24	04/25/24	HMN
2-Butanone	ND	ug/Kg	81	6.0	0.74	338690	04/25/24	04/25/24	HMN
cis-1,2-Dichloroethene	ND	ug/Kg	4.1	1.4	0.74	338690	04/25/24	04/25/24	HMN
2,2-Dichloropropane	ND	ug/Kg	4.1	0.8	0.74	338690	04/25/24	04/25/24	HMN
Chloroform	ND	ug/Kg	4.1	0.6	0.74	338690	04/25/24	04/25/24	HMN
Bromochloromethane	ND	ug/Kg	4.1	1.3	0.74	338690	04/25/24	04/25/24	HMN
1,1,1-Trichloroethane	ND	ug/Kg	4.1	1.0	0.74	338690	04/25/24	04/25/24	HMN
1,1-Dichloropropene	ND	ug/Kg	4.1	1.0	0.74	338690	04/25/24	04/25/24	HMN
Carbon Tetrachloride	ND	ug/Kg	4.1	1.2	0.74	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane	ND	ug/Kg ug/Kg	4.1	1.0	0.74	338690	04/25/24	04/25/24	HMN
Benzene	ND	ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
Trichloroethene	ND	ug/Kg ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
Themoroethene	טוו	ug/Ng	4.1	0.7	0.74	330030	04/23/24	04/23/24	I HVIIN

42 of 52

506595-011 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
1,2-Dichloropropane	ND	ug/Kg	4.1	1.9	0.74	338690	04/25/24	04/25/24	HMN
Bromodichloromethane	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
Dibromomethane	ND	ug/Kg	4.1	1.4	0.74	338690	04/25/24	04/25/24	HMN
4-Methyl-2-Pentanone	ND	ug/Kg	4.1	1.7	0.74	338690	04/25/24	04/25/24	HMN
cis-1,3-Dichloropropene	ND	ug/Kg	4.1	0.7	0.74	338690	04/25/24	04/25/24	HMN
Toluene	ND	ug/Kg	4.1	1.0	0.74	338690	04/25/24	04/25/24	HMN
trans-1,3-Dichloropropene	ND	ug/Kg	4.1	0.6	0.74	338690	04/25/24	04/25/24	HMN
1,1,2-Trichloroethane	ND	ug/Kg	4.1	1.5	0.74	338690	04/25/24	04/25/24	HMN
1,3-Dichloropropane	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
Tetrachloroethene	ND	ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
Dibromochloromethane	ND	ug/Kg	4.1	0.7	0.74	338690	04/25/24	04/25/24	HMN
1,2-Dibromoethane	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
Chlorobenzene	ND	ug/Kg	4.1	0.6	0.74	338690	04/25/24	04/25/24	HMN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
Ethylbenzene	ND	ug/Kg	4.1	0.7	0.74	338690	04/25/24	04/25/24	HMN
m,p-Xylenes	ND	ug/Kg	8.1	1.6	0.74	338690	04/25/24	04/25/24	HMN
o-Xylene	ND	ug/Kg	4.1	0.8	0.74	338690	04/25/24	04/25/24	HMN
Styrene	ND	ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
Bromoform	ND	ug/Kg	4.1	0.6	0.74	338690	04/25/24	04/25/24	HMN
Isopropylbenzene	ND	ug/Kg	4.1	0.5	0.74	338690	04/25/24	04/25/24	HMN
1,1,2,2-Tetrachloroethane	ND	ug/Kg ug/Kg	4.1	1.7	0.74	338690	04/25/24	04/25/24	HMN
1,2,3-Trichloropropane				1.7	0.74			04/25/24	
	ND	ug/Kg	4.1			338690	04/25/24		HMN
Propylbenzene	ND	ug/Kg	4.1	0.6	0.74	338690	04/25/24	04/25/24	HMN
Bromobenzene	ND	ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
1,3,5-Trimethylbenzene	ND	ug/Kg	4.1	0.5	0.74	338690	04/25/24	04/25/24	HMN
2-Chlorotoluene	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
4-Chlorotoluene	ND	ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
tert-Butylbenzene	ND	ug/Kg	4.1	0.5	0.74	338690	04/25/24	04/25/24	HMN
1,2,4-Trimethylbenzene	ND	ug/Kg	4.1	0.7	0.74	338690	04/25/24	04/25/24	HMN
sec-Butylbenzene	ND	ug/Kg	4.1	0.5	0.74	338690	04/25/24	04/25/24	HMN
para-Isopropyl Toluene	ND	ug/Kg	4.1	0.5	0.74	338690	04/25/24	04/25/24	HMN
1,3-Dichlorobenzene	ND	ug/Kg	4.1	1.2	0.74	338690	04/25/24	04/25/24	HMN
1,4-Dichlorobenzene	ND	ug/Kg	4.1	0.9	0.74	338690	04/25/24	04/25/24	HMN
n-Butylbenzene	ND	ug/Kg	4.1	0.8	0.74	338690	04/25/24	04/25/24	HMN
1,2-Dichlorobenzene	ND	ug/Kg	4.1	0.7	0.74	338690	04/25/24	04/25/24	HMN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	4.1	1.4	0.74	338690	04/25/24	04/25/24	HMN
1,2,4-Trichlorobenzene	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
Hexachlorobutadiene	ND	ug/Kg	4.1	1.0	0.74	338690	04/25/24	04/25/24	HMN
Naphthalene	ND	ug/Kg	4.1	1.1	0.74	338690	04/25/24	04/25/24	HMN
1,2,3-Trichlorobenzene	ND	ug/Kg	4.1	0.5	0.74	338690	04/25/24	04/25/24	HMN
Xylene (total)	ND	ug/Kg	4.1		0.74	338690	04/25/24	04/25/24	HMN
Surrogates			Limits						
Dibromofluoromethane	96%	%REC	70-145		0.74	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane-d4	108%	%REC	70-145		0.74	338690	04/25/24	04/25/24	HMN
Toluene-d8	94%	%REC	70-145		0.74	338690	04/25/24	04/25/24	HMN
Bromofluorobenzene	98%	%REC	70-145		0.74	338690	04/25/24	04/25/24	HMN
Method: EPA 8270C-SIM Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	11	1.7	1	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND	ug/Kg	11	1.7	1	338344	04/21/24	04/24/24	HQN
Naphthalene	ND	ug/Kg ug/Kg	11	3.9	1	338344	04/21/24	04/24/24	HQN
napililiaiene	טויו	ug/Ng	1.1	ა.უ	- 1	JJUJ44	U4/21/24	U4/24/24	וועוו

506595-011 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Acenaphthene	ND		ug/Kg	11	1.1	1	338344	04/21/24	04/24/24	HQN
Fluorene	ND		ug/Kg	11	1.4	1	338344	04/21/24	04/24/24	HQN
Phenanthrene	3.0	J	ug/Kg	11	2.4	1	338344	04/21/24	04/24/24	HQN
Anthracene	3.5	J	ug/Kg	11	1.5	1	338344	04/21/24	04/24/24	HQN
Fluoranthene	7.6	J	ug/Kg	11	3.7	1	338344	04/21/24	04/24/24	HQN
Pyrene	6.7	J	ug/Kg	11	4.0	1	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	2.9	J	ug/Kg	11	1.2	1	338344	04/21/24	04/24/24	HQN
Chrysene	5.0	J	ug/Kg	11	1.1	1	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	8.7	J	ug/Kg	11	1.0	1	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	2.9	J	ug/Kg	11	1.2	1	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	3.7	J	ug/Kg	11	1.5	1	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	4.3	J,b	ug/Kg	11	1.7	1	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	11	3.1	1	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	5.1	J,b	ug/Kg	11	1.8	1	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	84%		%REC	27-125		10	338344	04/21/24	04/25/24	HQN
2-Fluorobiphenyl	80%		%REC	30-120		10	338344	04/21/24	04/25/24	HQN
Terphenyl-d14	80%		%REC	33-155		10	338344	04/21/24	04/25/24	HQN

Sample ID: PC 4-0.5 Lab ID: 506595-012 Collected: 04/16/24 10:50

Matrix: Soil Basis: Dry

506595-012 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: ASTM D2216										
Prep Method: METHOD			0/	- 4		4	222200	04/00/04	04/02/04	Λ D M
Moisture, Percent	4		%	1		1	338380	04/22/24	04/23/24	ARM
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	1.2	0.96	338281	04/19/24	04/21/24	SBW
Arsenic	2.2		mg/Kg	1.0	0.59	0.96	338281	04/19/24	04/21/24	SBW
Barium	19		mg/Kg	1.0	0.36	0.96	338281	04/19/24	04/21/24	SBW
Beryllium	0.089	B,J	mg/Kg	0.50	0.011	0.96	338281	04/19/24	04/21/24	SBW
Cadmium	0.19	J	mg/Kg	0.50	0.046	0.96	338281	04/19/24	04/21/24	SBW
Chromium	8.3		mg/Kg	1.0	0.12	0.96	338281	04/19/24	04/21/24	SBW
Cobalt	2.0		mg/Kg	0.50	0.27	0.96	338281	04/19/24	04/21/24	SBW
Copper	74		mg/Kg	1.0	0.20	0.96	338281	04/19/24	04/21/24	SBW
Lead	18		mg/Kg	1.0	0.38	0.96	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.1	1.1	0.96	338281	04/19/24	04/21/24	SBW
Nickel	6.0		mg/Kg	1.0	0.17	0.96	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.0	0.85	0.96	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.50	0.15	0.96	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.0	0.87	0.96	338281	04/19/24	04/21/24	SBW
Vanadium	16		mg/Kg	1.0	0.079	0.96	338281	04/19/24	04/21/24	SBW
Zinc	32		mg/Kg	5.0	0.37	0.96	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury Method: EPA 8015M	ND		mg/Kg	0.16	0.039	1.1	338363	04/22/24	04/22/24	KAM
Prep Method: EPA 3580M										
GRO C6-C12	57		mg/Kg	52		5	338322	04/20/24	04/23/24	TJW
DRO C10-C28	180		mg/Kg	52	18	5	338322	04/20/24	04/23/24	TJW
ORO C28-C44	410		mg/Kg	100	18	5	338322	04/20/24	04/23/24	TJW
Surrogates				Limits						
n-Triacontane	129%		%REC	70-130		5	338322	04/20/24	04/23/24	TJW
	ND		ug/Kg	5.2	1.3	0.99	338342	04/21/24	04/23/24	KLR
Prep Method: EPA 3546	ND ND		ug/Kg ug/Kg		1.3	0.99	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR KLR
Prep Method: EPA 3546 alpha-BHC				5.2						
Prep Method: EPA 3546 alpha-BHC beta-BHC	ND		ug/Kg	5.2 5.2	1.7	0.99	338342	04/21/24	04/23/24	KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC	ND ND		ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2	1.7 1.1	0.99	338342 338342	04/21/24 04/21/24	04/23/24 04/23/24	KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC	ND ND ND		ug/Kg ug/Kg	5.2 5.2 5.2 5.2	1.7 1.1 1.4	0.99 0.99 0.99	338342 338342 338342	04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24	KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6	0.99 0.99 0.99 0.99	338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin	ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3	0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I	ND ND ND ND ND ND	J	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9	0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide	ND ND ND ND ND	J	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9	0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	ND	J	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9 1.5	0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR KLR KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	ND N	J	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9 1.5 1.5	0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE	ND N	J	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.7 1.1 1.4 1.6 1.3 1.9 1.5 1.5	0.99 0.99 0.99 0.99 0.99 0.99 0.99	338342 338342 338342 338342 338342 338342 338342 338342 338342	04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24 04/21/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	KLR KLR KLR KLR KLR KLR KLR KLR

		•	ysis ne	Janis	101 3	0053	,5			
506595-012 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND		ug/Kg	5.2	1.7	0.99	338342	04/21/24	04/23/24	KLR
Endrin ketone	ND		ug/Kg	5.2	1.4	0.99	338342	04/21/24	04/23/24	KLR
4,4'-DDT	3.1	J	ug/Kg	5.2	1.5	0.99	338342	04/21/24	04/23/24	KLR
Methoxychlor	ND		ug/Kg	10	5.2	0.99	338342	04/21/24	04/23/24	KLR
Toxaphene	ND		ug/Kg	100	15	0.99	338342	04/21/24	04/23/24	KLR
Chlordane (Technical)	ND		ug/Kg	52	11	0.99	338342	04/21/24	04/23/24	KLR
Surrogates				Limits						
TCMX	93%		%REC	23-120		0.99	338342	04/21/24	04/23/24	KLR
Decachlorobiphenyl	82%		%REC	24-120		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8082										
Prep Method: EPA 3546										
Aroclor-1016	ND		ug/Kg	52	15	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1221	ND		ug/Kg	52	23	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1232	ND		ug/Kg	52	19	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1242	ND		ug/Kg	52	18	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1248	ND		ug/Kg	52	22	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1254	ND		ug/Kg	52	6.8	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1260	ND		ug/Kg	52	25	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1262	ND		ug/Kg	52	17	0.99	338342	04/21/24	04/23/24	KLR
Aroclor-1268	ND		ug/Kg	52	14	0.99	338342	04/21/24	04/23/24	KLR
Surrogates	IND		ug/Ng	Limits	14	0.55	330342	04/21/24	04/23/24	INLIT
Decachlorobiphenyl (PCB)	81%		%REC	19-121		0.99	338342	04/21/24	04/23/24	KLR
Method: EPA 8260B Prep Method: EPA 5035										
3-Chloropropene	ND		ug/Kg	5.2	8.0	1	338690	04/25/24	04/25/24	HMN
cis-1,4-Dichloro-2-butene	ND		ug/Kg	5.2	1.7	1	338690	04/25/24	04/25/24	HMN
trans-1,4-Dichloro-2-butene	ND		ug/Kg	5.2	2.5	1	338690	04/25/24	04/25/24	HMN
Freon 12	ND		ug/Kg	5.2	1.8	1	338690	04/25/24	04/25/24	HMN
Chloromethane	ND		ug/Kg	5.2	2.4	1	338690	04/25/24	04/25/24	HMN
Vinyl Chloride	ND		ug/Kg	5.2	2.3	1	338690	04/25/24	04/25/24	HMN
Bromomethane	ND		ug/Kg	5.2	2.3	1	338690	04/25/24	04/25/24	HMN
Chloroethane	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
Trichlorofluoromethane	ND		ug/Kg	5.2	1.5	1	338690	04/25/24	04/25/24	HMN
Acetone	66	J	ug/Kg	100	64	1	338690	04/25/24	04/25/24	HMN
Freon 113	ND		ug/Kg	5.2	0.8	1	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethene	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
Methylene Chloride	ND		ug/Kg	5.2	3.8	1	338690	04/25/24	04/25/24	HMN
MTBE	ND		ug/Kg	5.2	1.0	1	338690	04/25/24	04/25/24	HMN
trans-1,2-Dichloroethene	ND		ug/Kg	5.2	1.3	1	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethane	ND		ug/Kg	5.2	1.8	1	338690	04/25/24	04/25/24	HMN
2-Butanone	ND		ug/Kg	100	7.7	1	338690	04/25/24	04/25/24	HMN
cis-1,2-Dichloroethene	ND		ug/Kg	5.2	1.8	1	338690	04/25/24	04/25/24	HMN
2,2-Dichloropropane	ND		ug/Kg	5.2	1.0	1	338690	04/25/24	04/25/24	HMN
Chloroform	ND		ug/Kg	5.2	0.8	1	338690	04/25/24	04/25/24	HMN
Bromochloromethane	ND		ug/Kg ug/Kg	5.2	1.7	1	338690	04/25/24	04/25/24	HMN
1,1,1-Trichloroethane	ND		ug/Kg ug/Kg	5.2	1.3	1	338690	04/25/24	04/25/24	HMN
1,1-Dichloropropene	ND		ug/Kg ug/Kg	5.2	1.3	1	338690	04/25/24	04/25/24	HMN
Carbon Tetrachloride	ND		ug/Kg ug/Kg	5.2	1.6	1	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane	ND		ug/Kg ug/Kg	5.2	1.2	1	338690	04/25/24	04/25/24	HMN
						1 4				
Benzene	ND		ug/Kg	5.2	1.2	1	338690	04/25/24	04/25/24	HMN
Trichloroethene	ND		ug/Kg	5.2	0.9	1	338690	04/25/24	04/25/24	HMN

506595-012 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
1,2-Dichloropropane	ND		ug/Kg	5.2	2.4	1	338690	04/25/24	04/25/24	HMN
Bromodichloromethane	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
Dibromomethane	ND		ug/Kg	5.2	1.8	1	338690	04/25/24	04/25/24	HMN
4-Methyl-2-Pentanone	ND		ug/Kg	5.2	2.2	1	338690	04/25/24	04/25/24	HMN
cis-1,3-Dichloropropene	ND		ug/Kg	5.2	0.9	1	338690	04/25/24	04/25/24	HMN
Toluene	ND		ug/Kg	5.2	1.3	1	338690	04/25/24	04/25/24	HMN
trans-1,3-Dichloropropene	ND		ug/Kg	5.2	0.8	1	338690	04/25/24	04/25/24	HMN
1,1,2-Trichloroethane	ND		ug/Kg	5.2	1.9	1	338690	04/25/24	04/25/24	HMN
1,3-Dichloropropane	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
Tetrachloroethene	ND		ug/Kg	5.2	1.2	1	338690	04/25/24	04/25/24	HMN
Dibromochloromethane	ND		ug/Kg	5.2	1.0	1	338690	04/25/24	04/25/24	HMN
1,2-Dibromoethane	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
Chlorobenzene	ND		ug/Kg	5.2	0.8	1	338690	04/25/24	04/25/24	HMN
1,1,1,2-Tetrachloroethane	ND		ug/Kg	5.2	1.2	<u>.</u> 1	338690	04/25/24	04/25/24	HMN
Ethylbenzene	ND		ug/Kg	5.2	0.9	<u>.</u> 1	338690	04/25/24	04/25/24	HMN
m,p-Xylenes	ND		ug/Kg	10	2.0	<u>.</u> 1	338690	04/25/24	04/25/24	HMN
o-Xylene	ND		ug/Kg ug/Kg	5.2	1.1	1	338690	04/25/24	04/25/24	HMN
Styrene	ND ND		ug/Kg ug/Kg	5.2	1.1	1	338690	04/25/24	04/25/24	HMN
Bromoform	ND		ug/Kg ug/Kg	5.2	0.7	<u> </u>	338690	04/25/24	04/25/24	HMN
				5.2	0.7	1			04/25/24	HMN
Isopropylbenzene	ND		ug/Kg			1	338690	04/25/24		
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.2	2.2	1	338690	04/25/24	04/25/24	HMN
1,2,3-Trichloropropane	ND		ug/Kg	5.2	1.6	1	338690	04/25/24	04/25/24	HMN
Propylbenzene	ND		ug/Kg	5.2	0.8	1	338690	04/25/24	04/25/24	HMN
Bromobenzene	ND		ug/Kg	5.2	1.1	1	338690	04/25/24	04/25/24	HMN
1,3,5-Trimethylbenzene	ND		ug/Kg	5.2	0.6	1	338690	04/25/24	04/25/24	HMN
2-Chlorotoluene	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
4-Chlorotoluene	ND		ug/Kg	5.2	1.1	1	338690	04/25/24	04/25/24	HMN
tert-Butylbenzene	ND		ug/Kg	5.2	0.6	1	338690	04/25/24	04/25/24	HMN
1,2,4-Trimethylbenzene	ND		ug/Kg	5.2	0.8	1	338690	04/25/24	04/25/24	HMN
sec-Butylbenzene	ND		ug/Kg	5.2	0.7	1	338690	04/25/24	04/25/24	HMN
para-Isopropyl Toluene	2.5	J	ug/Kg	5.2	0.7	1	338690	04/25/24	04/25/24	HMN
1,3-Dichlorobenzene	ND		ug/Kg	5.2	1.5	1	338690	04/25/24	04/25/24	HMN
1,4-Dichlorobenzene	ND		ug/Kg	5.2	1.2	1	338690	04/25/24	04/25/24	HMN
n-Butylbenzene	ND		ug/Kg	5.2	1.0	1	338690	04/25/24	04/25/24	HMN
1,2-Dichlorobenzene	ND		ug/Kg	5.2	0.9	1	338690	04/25/24	04/25/24	HMN
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.2	1.8	1	338690	04/25/24	04/25/24	HMN
1,2,4-Trichlorobenzene	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
Hexachlorobutadiene	ND		ug/Kg	5.2	1.2	1	338690	04/25/24	04/25/24	HMN
Naphthalene	ND		ug/Kg	5.2	1.4	1	338690	04/25/24	04/25/24	HMN
1,2,3-Trichlorobenzene	ND		ug/Kg	5.2	0.7	1	338690	04/25/24	04/25/24	HMN
Xylene (total)	ND		ug/Kg	5.2		1	338690	04/25/24	04/25/24	HMN
Surrogates				Limits						
Dibromofluoromethane	99%		%REC	70-145		1	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane-d4	107%		%REC	70-145		1	338690	04/25/24	04/25/24	HMN
Toluene-d8	97%		%REC	70-145		1	338690	04/25/24	04/25/24	HMN
Bromofluorobenzene	104%		%REC	70-145		1	338690	04/25/24	04/25/24	HMN
Method: EPA 8270C-SIM Prep Method: EPA 3546	10170		701120	70 110		<u> </u>	-	0 1/20/21	0 1/20/21	
1-Methylnaphthalene	ND		ug/Kg	520	79	50	338344	04/21/24	04/24/24	HQN
2-Methylnaphthalene	ND		ug/Kg	520	78	50	338344	04/21/24	04/24/24	HQN
Naphthalene	ND		ug/Kg ug/Kg	520	190	50	338344	04/21/24	04/24/24	HQN
Acenaphthylene	ND		ug/itg	520	190	50	000044	UT/4 1/44	UT/LT/L4	IIQIV

506595-012 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Acenaphthene	ND		ug/Kg	520	54	50	338344	04/21/24	04/24/24	HQN
Fluorene	ND		ug/Kg	520	64	50	338344	04/21/24	04/24/24	HQN
Phenanthrene	ND		ug/Kg	520	110	50	338344	04/21/24	04/24/24	HQN
Anthracene	ND		ug/Kg	520	72	50	338344	04/21/24	04/24/24	HQN
Fluoranthene	ND		ug/Kg	520	170	50	338344	04/21/24	04/24/24	HQN
Pyrene	ND		ug/Kg	520	190	50	338344	04/21/24	04/24/24	HQN
Benzo(a)anthracene	ND		ug/Kg	520	56	50	338344	04/21/24	04/24/24	HQN
Chrysene	ND		ug/Kg	520	50	50	338344	04/21/24	04/24/24	HQN
Benzo(b)fluoranthene	ND		ug/Kg	520	48	50	338344	04/21/24	04/24/24	HQN
Benzo(k)fluoranthene	ND		ug/Kg	520	54	50	338344	04/21/24	04/24/24	HQN
Benzo(a)pyrene	ND		ug/Kg	520	69	50	338344	04/21/24	04/24/24	HQN
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	520	79	50	338344	04/21/24	04/24/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	520	150	50	338344	04/21/24	04/24/24	HQN
Benzo(g,h,i)perylene	ND		ug/Kg	520	85	50	338344	04/21/24	04/24/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	130%	*	%REC	27-125		50	338344	04/21/24	04/24/24	HQN
2-Fluorobiphenyl	94%		%REC	30-120		50	338344	04/21/24	04/24/24	HQN
Terphenyl-d14	81%		%REC	33-155		50	338344	04/21/24	04/24/24	HQN

Sample ID: PC 5-1 Lab ID: 506595-013 Collected: 04/16/24 11:30

Matrix: Soil Basis: Dry

506595-013 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemis
Method: ASTM D2216 Prep Method: METHOD										
Moisture, Percent	8		%	1		1	338380	04/22/24	04/23/24	ARM
· · · · · · · · · · · · · · · · · · ·	0		70			- 1	330300	04/22/24	04/23/24	AUIN
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.2	1.3	0.98	338281	04/19/24	04/21/24	SBW
Arsenic	3.3		mg/Kg	1.1	0.63	0.98	338281	04/19/24	04/21/24	SBW
Barium	18		mg/Kg	1.1	0.38	0.98	338281	04/19/24	04/21/24	SBW
Beryllium	0.10	B,J	mg/Kg	0.53	0.012	0.98	338281	04/19/24	04/21/24	SBW
Cadmium	0.15	J	mg/Kg	0.53	0.049	0.98	338281	04/19/24	04/21/24	SBW
Chromium	8.5		mg/Kg	1.1	0.13	0.98	338281	04/19/24	04/21/24	SBW
Cobalt	1.7		mg/Kg	0.53	0.29	0.98	338281	04/19/24	04/21/24	SBW
Copper	6.2		mg/Kg	1.1	0.21	0.98	338281	04/19/24	04/21/24	SBW
Lead	19		mg/Kg	1.1	0.40	0.98	338281	04/19/24	04/21/24	SBW
Molybdenum	ND		mg/Kg	1.2	1.2	0.98	338281	04/19/24	04/21/24	SBW
Nickel	7.8		mg/Kg	1.1	0.18	0.98	338281	04/19/24	04/21/24	SBW
Selenium	ND		mg/Kg	3.2	0.90	0.98	338281	04/19/24	04/21/24	SBW
Silver	ND		mg/Kg	0.53	0.16	0.98	338281	04/19/24	04/21/24	SBW
Thallium	ND		mg/Kg	3.2	0.93	0.98	338281	04/19/24	04/21/24	SBW
Vanadium	9.9		mg/Kg	1.1	0.084	0.98	338281	04/19/24	04/21/24	SBW
Zinc	40		mg/Kg	5.3	0.39	0.98	338281	04/19/24	04/21/24	SBW
Method: EPA 7471A Prep Method: METHOD Mercury	ND		mg/Kg	0.18	0.044	1.2	338363	04/22/24	04/22/24	KAM
Method: EPA 8015M Prep Method: EPA 3580M										
GRO C6-C12	ND		mg/Kg	11		0.99	338322	04/20/24	04/23/24	TJW
DRO C10-C28	63		mg/Kg	11	3.7	0.99	338322	04/20/24	04/23/24	TJW
ORO C28-C44	120		mg/Kg	22	3.7	0.99	338322	04/20/24	04/23/24	TJW
Surrogates				Limits						
n-Triacontane	121%		%REC	70-130		0.99	338322	04/20/24	04/23/24	TJW
M II EDA 0004A										
	ND		ug/Kg	5.5	1.1	1	338386	04/22/24	04/23/24	MES
Prep Method: EPA 3546	ND ND		ug/Kg ug/Kg	5.5 5.5	1.1 1.5	1 1	338386 338386	04/22/24	04/23/24 04/23/24	MES MES
Prep Method: EPA 3546 alpha-BHC										
Prep Method: EPA 3546 alpha-BHC beta-BHC	ND		ug/Kg	5.5	1.5	1	338386	04/22/24	04/23/24	MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC	ND ND		ug/Kg ug/Kg	5.5 5.5	1.5 1.1	1	338386 338386	04/22/24 04/22/24	04/23/24 04/23/24	MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC	ND ND ND		ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5	1.5 1.1 1.3	1 1 1	338386 338386 338386	04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24	MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor	ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5 5.5	1.5 1.1 1.3 1.9	1 1 1	338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin	ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5 5.5 5.5	1.5 1.1 1.3 1.9 1.5	1 1 1 1 1	338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide	ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5 5.5 5.5 5.5	1.5 1.1 1.3 1.9 1.5 1.8	1 1 1 1 1	338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I	ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.5 1.1 1.3 1.9 1.5 1.8	1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	ND ND ND ND ND ND ND		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.5 1.1 1.3 1.9 1.5 1.8 1.5	1 1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES MES MES MES MES MES MES MES MES
Prep Method: EPA 3546 alpha-BHC beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	ND N		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.5 1.1 1.3 1.9 1.5 1.8 1.5 1.7 1.6	1 1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES
beta-BHC gamma-BHC delta-BHC Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE	ND N		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	1.5 1.1 1.3 1.9 1.5 1.8 1.5 1.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	338386 338386 338386 338386 338386 338386 338386 338386	04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24 04/22/24	04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24 04/23/24	MES

506595-013 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Endrin aldehyde	ND	ug/Kg	5.5	1.3	1	338386	04/22/24	04/23/24	MES
Endrin ketone	ND	ug/Kg	5.5	1.6	1	338386	04/22/24	04/23/24	MES
4,4'-DDT	ND	ug/Kg	5.5	1.9	1	338386	04/22/24	04/23/24	MES
Methoxychlor	ND	ug/Kg	11	2.5	1	338386	04/22/24	04/23/24	MES
Toxaphene	ND	ug/Kg	110	34	1	338386	04/22/24	04/23/24	MES
Chlordane (Technical)	ND	ug/Kg	55	10	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
TCMX	73%	%REC	23-120		1	338386	04/22/24	04/23/24	MES
Decachlorobiphenyl	60%	%REC	24-120		1	338386	04/22/24	04/23/24	MES
Method: EPA 8082 Prep Method: EPA 3546									
Aroclor-1016	ND	ug/Kg	55	14	1	338386	04/22/24	04/23/24	MES
Aroclor-1221	ND	ug/Kg	55	12	1	338386	04/22/24	04/23/24	MES
Aroclor-1232	ND	ug/Kg	55	12	1	338386	04/22/24	04/23/24	MES
Aroclor-1242	ND	ug/Kg	55	18	1	338386	04/22/24	04/23/24	MES
Aroclor-1248	ND	ug/Kg	55	18	1	338386	04/22/24	04/23/24	MES
Aroclor-1254	ND	ug/Kg	55	17	1	338386	04/22/24	04/23/24	MES
Aroclor-1260	ND	ug/Kg	55	25	1	338386	04/22/24	04/23/24	MES
Aroclor-1262	ND	ug/Kg	55	14	1	338386	04/22/24	04/23/24	MES
Aroclor-1268	ND	ug/Kg	55	16	1	338386	04/22/24	04/23/24	MES
Surrogates			Limits						
Decachlorobiphenyl (PCB)	75%	%REC	19-121		1	338386	04/22/24	04/23/24	MES
Method: EPA 8260B Prep Method: EPA 5035									
3-Chloropropene	ND	ug/Kg	4.5	0.7	0.82	338690	04/25/24	04/25/24	HMN
cis-1,4-Dichloro-2-butene	ND	ug/Kg	4.5	1.4	0.82	338690	04/25/24	04/25/24	HMN
trans-1,4-Dichloro-2-butene	ND	ug/Kg	4.5	2.2	0.82	338690	04/25/24	04/25/24	HMN
Freon 12	ND	ug/Kg	4.5	1.6	0.82	338690	04/25/24	04/25/24	HMN
Chloromethane	ND	ug/Kg	4.5	2.0	0.82	338690	04/25/24	04/25/24	HMN
Vinyl Chloride	ND	ug/Kg	4.5	2.0	0.82	338690	04/25/24	04/25/24	HMN
Bromomethane	ND	ug/Kg	4.5	2.0	0.82	338690	04/25/24	04/25/24	HMN
Chloroethane	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
Trichlorofluoromethane	ND	ug/Kg	4.5	1.3	0.82	338690	04/25/24	04/25/24	HMN
Acetone	ND	ug/Kg	89	54	0.82	338690	04/25/24	04/25/24	HMN
Freon 113	ND	ug/Kg	4.5	0.7	0.82	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethene	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
Methylene Chloride	ND	ug/Kg	4.5	3.3	0.82	338690	04/25/24	04/25/24	HMN
MTBE	ND	ug/Kg	4.5	0.8	0.82	338690	04/25/24	04/25/24	HMN
trans-1,2-Dichloroethene	ND	ug/Kg	4.5	1.1	0.82	338690	04/25/24	04/25/24	HMN
1,1-Dichloroethane	ND	ug/Kg	4.5	1.6	0.82	338690	04/25/24	04/25/24	HMN
2-Butanone	ND	ug/Kg	89	6.5	0.82	338690	04/25/24	04/25/24	HMN
cis-1,2-Dichloroethene	ND	ug/Kg	4.5	1.5	0.82	338690	04/25/24	04/25/24	HMN
2,2-Dichloropropane	ND	ug/Kg	4.5	0.8	0.82	338690	04/25/24	04/25/24	HMN
Chloroform	ND	ug/Kg	4.5	0.7	0.82	338690	04/25/24	04/25/24	HMN
Bromochloromethane	ND	ug/Kg	4.5	1.4	0.82	338690	04/25/24	04/25/24	HMN
1,1,1-Trichloroethane	ND	ug/Kg	4.5	1.1	0.82	338690	04/25/24	04/25/24	HMN
1,1-Dichloropropene	ND	ug/Kg	4.5	1.1	0.82	338690	04/25/24	04/25/24	HMN
Carbon Tetrachloride	ND	ug/Kg	4.5	1.3	0.82	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
Benzene	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
Denzene	110	a a, i ta		1.0					

506595-013 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
1,2-Dichloropropane	ND	ug/Kg	4.5	2.1	0.82	338690	04/25/24	04/25/24	HMN
Bromodichloromethane	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
Dibromomethane	ND	ug/Kg	4.5	1.6	0.82	338690	04/25/24	04/25/24	HMN
4-Methyl-2-Pentanone	ND	ug/Kg	4.5	1.8	0.82	338690	04/25/24	04/25/24	HMN
cis-1,3-Dichloropropene	ND	ug/Kg	4.5	0.8	0.82	338690	04/25/24	04/25/24	HMN
Toluene	ND	ug/Kg	4.5	1.1	0.82	338690	04/25/24	04/25/24	HMN
trans-1,3-Dichloropropene	ND	ug/Kg	4.5	0.7	0.82	338690	04/25/24	04/25/24	HMN
1,1,2-Trichloroethane	ND	ug/Kg	4.5	1.6	0.82	338690	04/25/24	04/25/24	HMN
1,3-Dichloropropane	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
Tetrachloroethene	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
Dibromochloromethane	ND	ug/Kg	4.5	0.8	0.82	338690	04/25/24	04/25/24	HMN
1,2-Dibromoethane	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
Chlorobenzene	ND	ug/Kg	4.5	0.7	0.82	338690	04/25/24	04/25/24	HMN
1,1,1,2-Tetrachloroethane	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
Ethylbenzene	ND	ug/Kg	4.5	0.8	0.82	338690	04/25/24	04/25/24	HMN
m,p-Xylenes	ND	ug/Kg	8.9	1.7	0.82	338690	04/25/24	04/25/24	HMN
o-Xylene	ND	ug/Kg	4.5	0.9	0.82	338690	04/25/24	04/25/24	HMN
Styrene	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
Bromoform	ND	ug/Kg	4.5	0.6	0.82	338690	04/25/24	04/25/24	HMN
Isopropylbenzene	ND	ug/Kg	4.5	0.6	0.82	338690	04/25/24	04/25/24	HMN
1,1,2,2-Tetrachloroethane	ND	ug/Kg ug/Kg	4.5	1.9	0.82	338690	04/25/24	04/25/24	HMN
1,2,3-Trichloropropane	ND	ug/Kg ug/Kg	4.5	1.3	0.82	338690	04/25/24	04/25/24	HMN
	ND			0.7	0.82	338690	04/25/24	04/25/24	
Propylbenzene		ug/Kg	4.5						HMN
Bromobenzene	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
1,3,5-Trimethylbenzene	ND	ug/Kg	4.5	0.5	0.82	338690	04/25/24	04/25/24	HMN
2-Chlorotoluene	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
4-Chlorotoluene	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
tert-Butylbenzene	ND	ug/Kg	4.5	0.5	0.82	338690	04/25/24	04/25/24	HMN
1,2,4-Trimethylbenzene	ND	ug/Kg	4.5	0.7	0.82	338690	04/25/24	04/25/24	HMN
sec-Butylbenzene	ND	ug/Kg	4.5	0.6	0.82	338690	04/25/24	04/25/24	HMN
para-Isopropyl Toluene	ND	ug/Kg	4.5	0.6	0.82	338690	04/25/24	04/25/24	HMN
1,3-Dichlorobenzene	ND	ug/Kg	4.5	1.3	0.82	338690	04/25/24	04/25/24	HMN
1,4-Dichlorobenzene	ND	ug/Kg	4.5	1.0	0.82	338690	04/25/24	04/25/24	HMN
n-Butylbenzene	ND	ug/Kg	4.5	8.0	0.82	338690	04/25/24	04/25/24	HMN
1,2-Dichlorobenzene	ND	ug/Kg	4.5	0.7	0.82	338690	04/25/24	04/25/24	HMN
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	4.5	1.5	0.82	338690	04/25/24	04/25/24	HMN
1,2,4-Trichlorobenzene	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
Hexachlorobutadiene	ND	ug/Kg	4.5	1.1	0.82	338690	04/25/24	04/25/24	HMN
Naphthalene	ND	ug/Kg	4.5	1.2	0.82	338690	04/25/24	04/25/24	HMN
1,2,3-Trichlorobenzene	ND	ug/Kg	4.5	0.6	0.82	338690	04/25/24	04/25/24	HMN
Xylene (total)	ND	ug/Kg	4.5		0.82	338690	04/25/24	04/25/24	HMN
Surrogates			Limits						
Dibromofluoromethane	97%	%REC	70-145		0.82	338690	04/25/24	04/25/24	HMN
1,2-Dichloroethane-d4	109%	%REC	70-145		0.82	338690	04/25/24	04/25/24	HMN
Toluene-d8	96%	%REC	70-145		0.82	338690	04/25/24	04/25/24	HMN
Bromofluorobenzene	96%	%REC	70-145		0.82	338690	04/25/24	04/25/24	HMN
Method: EPA 8270C-SIM Prep Method: EPA 3546									
1-Methylnaphthalene	ND	ug/Kg	270	42	25	338344	04/21/24	04/26/24	HQN
2-Methylnaphthalene	ND	ug/Kg	270	41	25	338344	04/21/24	04/26/24	HQN
Naphthalene	ND	ug/Kg ug/Kg	270	98	25	338344	04/21/24	04/26/24	HQN
Naphilialene	טויו	ug/ng	210	30	20	000044	リサ/ムコ/ムサ	UT/LU/L4	וועוו

506595-013 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Acenaphthene	ND		ug/Kg	270	28	25	338344	04/21/24	04/26/24	HQN
Fluorene	ND		ug/Kg	270	34	25	338344	04/21/24	04/26/24	HQN
Phenanthrene	ND		ug/Kg	270	60	25	338344	04/21/24	04/26/24	HQN
Anthracene	ND		ug/Kg	270	38	25	338344	04/21/24	04/26/24	HQN
Fluoranthene	ND		ug/Kg	270	92	25	338344	04/21/24	04/26/24	HQN
Pyrene	ND		ug/Kg	270	99	25	338344	04/21/24	04/26/24	HQN
Benzo(a)anthracene	ND		ug/Kg	270	30	25	338344	04/21/24	04/26/24	HQN
Chrysene	ND		ug/Kg	270	26	25	338344	04/21/24	04/26/24	HQN
Benzo(b)fluoranthene	ND		ug/Kg	270	25	25	338344	04/21/24	04/26/24	HQN
Benzo(k)fluoranthene	ND		ug/Kg	270	29	25	338344	04/21/24	04/26/24	HQN
Benzo(a)pyrene	ND		ug/Kg	270	37	25	338344	04/21/24	04/26/24	HQN
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	270	42	25	338344	04/21/24	04/26/24	HQN
Dibenz(a,h)anthracene	ND		ug/Kg	270	77	25	338344	04/21/24	04/26/24	HQN
Benzo(g,h,i)perylene	ND		ug/Kg	270	45	25	338344	04/21/24	04/26/24	HQN
Surrogates				Limits						
Nitrobenzene-d5	102%		%REC	27-125		25	338344	04/21/24	04/26/24	HQN
2-Fluorobiphenyl	91%		%REC	30-120		25	338344	04/21/24	04/26/24	HQN
Terphenyl-d14	86%		%REC	33-155		25	338344	04/21/24	04/26/24	HQN

Value is outside QC limits

B Contamination found in associated Method Blank

J Estimated value

ND Not Detected

b See narrative

Type: Sample Duplicate Lab ID: QC1146643 Batch: 338380

Matrix (Source ID): Soil (506655-002) Method: ASTM D2216 Prep Method: METHOD

Source Sample **RPD** QC1146643 Analyte Result Result Units Qual **RPD** Lim **Basis** DF Moisture, Percent 8.678 9.161 % 20 1

Type: Blank Lab ID: QC1146206 Batch: 338281

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1146206 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Antimony	ND		mg/Kg	3.0	1.2	04/19/24	04/21/24
Arsenic	ND		mg/Kg	1.0	0.59	04/19/24	04/21/24
Barium	ND		mg/Kg	1.0	0.36	04/19/24	04/21/24
Beryllium	0.011	J	mg/Kg	0.50	0.011	04/19/24	04/21/24
Cadmium	ND		mg/Kg	0.50	0.046	04/19/24	04/21/24
Chromium	ND		mg/Kg	1.0	0.12	04/19/24	04/21/24
Cobalt	ND		mg/Kg	0.50	0.27	04/19/24	04/21/24
Copper	ND		mg/Kg	1.0	0.20	04/19/24	04/21/24
Lead	ND		mg/Kg	1.0	0.38	04/19/24	04/21/24
Molybdenum	ND		mg/Kg	1.1	1.1	04/19/24	04/21/24
Nickel	ND		mg/Kg	1.0	0.17	04/19/24	04/21/24
Selenium	ND		mg/Kg	3.0	0.84	04/19/24	04/21/24
Silver	ND		mg/Kg	0.50	0.15	04/19/24	04/21/24
Thallium	ND		mg/Kg	3.0	0.87	04/19/24	04/21/24
Vanadium	ND		mg/Kg	1.0	0.078	04/19/24	04/21/24
Zinc	ND		mg/Kg	5.0	0.37	04/19/24	04/21/24

Type: Lab Control Sample Lab ID: QC1146207 Batch: 338281

Matrix: Soil Method: EPA 6010B Prep Method: EPA 3050B

QC1146207 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Antimony	99.85	100.0	mg/Kg	100%	80-120
Arsenic	99.20	100.0	mg/Kg	99%	80-120
Barium	102.0	100.0	mg/Kg	102%	80-120
Beryllium	103.4	100.0	mg/Kg	103%	80-120
Cadmium	102.1	100.0	mg/Kg	102%	80-120
Chromium	98.45	100.0	mg/Kg	98%	80-120
Cobalt	105.4	100.0	mg/Kg	105%	80-120
Copper	98.71	100.0	mg/Kg	99%	80-120
Lead	104.1	100.0	mg/Kg	104%	80-120
Molybdenum	98.41	100.0	mg/Kg	98%	80-120
Nickel	103.3	100.0	mg/Kg	103%	80-120
Selenium	94.56	100.0	mg/Kg	95%	80-120
Silver	48.04	50.00	mg/Kg	96%	80-120
Thallium	108.2	100.0	mg/Kg	108%	80-120
Vanadium	99.72	100.0	mg/Kg	100%	80-120
Zinc	103.1	100.0	mg/Kg	103%	80-120

Type: Matrix Spike Lab ID: QC1146208 Batch: 338281

Matrix (Source ID): Soil (506595-001) Method: EPA 6010B Prep Method: EPA 3050B

Basis: Dry

		Source Sample						
QC1146208 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	61.67	ND	104.2	mg/Kg	59%	*	75-125	0.99
Arsenic	104.8	2.037	104.2	mg/Kg	99%		75-125	0.99
Barium	129.6	20.42	104.2	mg/Kg	105%		75-125	0.99
Beryllium	107.6	0.1417	104.2	mg/Kg	103%		75-125	0.99
Cadmium	104.9	0.09804	104.2	mg/Kg	101%		75-125	0.99
Chromium	113.8	10.27	104.2	mg/Kg	99%		75-125	0.99
Cobalt	109.4	2.504	104.2	mg/Kg	103%		75-125	0.99
Copper	115.0	10.34	104.2	mg/Kg	100%		75-125	0.99
Lead	133.6	26.61	104.2	mg/Kg	103%		75-125	0.99
Molybdenum	100.2	ND	104.2	mg/Kg	96%		75-125	0.99
Nickel	116.0	10.67	104.2	mg/Kg	101%		75-125	0.99
Selenium	99.41	ND	104.2	mg/Kg	95%		75-125	0.99
Silver	49.85	ND	52.11	mg/Kg	96%		75-125	0.99
Thallium	109.7	ND	104.2	mg/Kg	105%		75-125	0.99
Vanadium	121.8	14.49	104.2	mg/Kg	103%		75-125	0.99
Zinc	125.4	21.09	104.2	mg/Kg	100%		75-125	0.99

Type: Matrix Spike Duplicate Lab ID: QC1146209 Batch: 338281

Matrix (Source ID): Soil (506595-001) Method: EPA 6010B Prep Method: EPA 3050B

Basis: Dry

		Source Sample							RPD	
QC1146209 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Antimony	63.24	ND	101.2	mg/Kg	62%	*	75-125	5	41	0.96
Arsenic	107.3	2.037	101.2	mg/Kg	104%		75-125	5	35	0.96
Barium	129.9	20.42	101.2	mg/Kg	108%		75-125	3	20	0.96
Beryllium	110.0	0.1417	101.2	mg/Kg	109%		75-125	5	20	0.96
Cadmium	106.6	0.09804	101.2	mg/Kg	105%		75-125	5	20	0.96
Chromium	115.5	10.27	101.2	mg/Kg	104%		75-125	4	20	0.96
Cobalt	111.6	2.504	101.2	mg/Kg	108%		75-125	5	20	0.96
Copper	117.7	10.34	101.2	mg/Kg	106%		75-125	5	20	0.96
Lead	134.9	26.61	101.2	mg/Kg	107%		75-125	3	20	0.96
Molybdenum	102.5	ND	101.2	mg/Kg	101%		75-125	5	20	0.96
Nickel	118.3	10.67	101.2	mg/Kg	106%		75-125	5	20	0.96
Selenium	101.2	ND	101.2	mg/Kg	100%		75-125	5	20	0.96
Silver	51.00	ND	50.61	mg/Kg	101%		75-125	5	20	0.96
Thallium	112.6	ND	101.2	mg/Kg	111%		75-125	6	20	0.96
Vanadium	124.1	14.49	101.2	mg/Kg	108%		75-125	4	20	0.96
Zinc	128.5	21.09	101.2	mg/Kg	106%		75-125	5	20	0.96

Type: Post Digest Spike Lab ID: QC1146210 Batch: 338281

Matrix (Source ID): Soil (506595-001) Method: EPA 6010B Prep Method: EPA 3050B

Basis: Dry

		Source Sample						
QC1146210 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	98.50	ND	100.3	mg/Kg	98%		75-125	0.95
Arsenic	99.53	2.037	100.3	mg/Kg	97%		75-125	0.95
Barium	118.6	20.42	100.3	mg/Kg	98%		75-125	0.95
Beryllium	101.1	0.1417	100.3	mg/Kg	101%		75-125	0.95
Cadmium	98.32	0.09804	100.3	mg/Kg	98%		75-125	0.95
Chromium	105.2	10.27	100.3	mg/Kg	95%		75-125	0.95
Cobalt	103.1	2.504	100.3	mg/Kg	100%		75-125	0.95
Copper	109.0	10.34	100.3	mg/Kg	98%		75-125	0.95
Lead	125.3	26.61	100.3	mg/Kg	98%		75-125	0.95
Molybdenum	97.94	ND	100.3	mg/Kg	98%		75-125	0.95
Nickel	109.1	10.67	100.3	mg/Kg	98%		75-125	0.95
Selenium	94.81	ND	100.3	mg/Kg	95%		75-125	0.95
Silver	47.58	ND	50.13	mg/Kg	95%		75-125	0.95
Thallium	103.5	ND	100.3	mg/Kg	103%		75-125	0.95
Vanadium	112.3	14.49	100.3	mg/Kg	98%		75-125	0.95
Zinc	119.1	21.09	100.3	mg/Kg	98%		75-125	0.95

Type: Blank Lab ID: QC1146584 Batch: 338363

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

QC1146584 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Mercury	ND		ma/Ka	0.14	0.035	04/22/24	04/22/24

Type: Lab Control Sample Lab ID: QC1146585 Batch: 338363

Matrix: Soil Method: EPA 7471A Prep Method: METHOD

 QC1146585 Analyte
 Result
 Spiked
 Units
 Recovery
 Qual
 Limits

 Mercury
 0.8849
 0.8333
 mg/Kg
 106%
 80-120

Type: Matrix Spike Lab ID: QC1146586 Batch: 338363

Matrix (Source ID): Soil (506595-001) Method: EPA 7471A Prep Method: METHOD

Basis: Dry

Source Sample QC1146586 Analyte Recovery DF Result Result **Spiked** Units Qual Limits 1.061 ND 1.012 105% 75-125 1.2 Mercury mg/Kg

Type: Matrix Spike Duplicate Lab ID: QC1146587 Batch: 338363

Matrix (Source ID): Soil (506595-001) Method: EPA 7471A Prep Method: METHOD

Basis: Dry

Source

		Sample							RPD	
QC1146587 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Mercury	1.011	ND	0.9747	mg/Kg	104%		75-125	1	20	1.1

Type: Blank Lab ID: QC1146378 Batch: 338322

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1146378 Analyte	Result	Qual Units	RL	MDL	Prepared	Analyzed
GRO C6-C12	ND	mg/Kg	10		04/20/24	04/22/24
DRO C10-C28	ND	mg/Kg	10	3.5	04/20/24	04/22/24
ORO C28-C44	ND	mg/Kg	20	3.5	04/20/24	04/22/24
Surrogates			Limits			
n-Triacontane	107%	%REC	70-130		04/20/24	04/22/24

Type: Lab Control Sample Lab ID: QC1146379 Batch: 338322

Matrix: Soil Method: EPA 8015M Prep Method: EPA 3580M

QC1146379 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Diesel C10-C28	232.2	248.1	mg/Kg	94%	76-122
Surrogates					
n-Triacontane	11.29	9.926	mg/Kg	114%	70-130

Type: Matrix Spike Lab ID: QC1146380 Batch: 338322

Matrix (Source ID): Soil (506595-001) Method: EPA 8015M Prep Method: EPA 3580M

Basis: Dry

Source

		Sample						
QC1146380 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Diesel C10-C28	260.6	9.242	260.9	mg/Kg	96%		62-126	0.99
Surrogates								
n-Triacontane	12.91		10.44	mg/Kg	124%		70-130	0.99

Type: Matrix Spike Duplicate Lab ID: QC1146381 Batch: 338322

Matrix (Source ID): Soil (506595-001) Method: EPA 8015M Prep Method: EPA 3580M

Basis: Dry

Source

		Sample							RPD	
QC1146381 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
Diesel C10-C28	247.8	9.242	263.2	mg/Kg	91%		62-126	6	35	1
Surrogates										
n-Triacontane	12.50		10.53	mg/Kg	119%		70-130			1

Type: Blank Lab ID: QC1146472 Batch: 338342

Matrix: Soil

QC1146472 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Method: EPA 8081A Prep Method: EPA 3546							
alpha-BHC	ND		ug/Kg	5.0	1.2	04/21/24	04/23/24
beta-BHC	ND		ug/Kg	5.0	1.7	04/21/24	04/23/24
gamma-BHC	ND		ug/Kg	5.0	1.0	04/21/24	04/23/24
delta-BHC	ND		ug/Kg	5.0	1.4	04/21/24	04/23/24
Heptachlor	ND		ug/Kg	5.0	1.5	04/21/24	04/23/24
Aldrin	ND		ug/Kg	5.0	1.3	04/21/24	04/23/24
Heptachlor epoxide	ND		ug/Kg	5.0	1.8	04/21/24	04/23/24
Endosulfan I	ND		ug/Kg	5.0	1.4	04/21/24	04/23/24
Dieldrin	ND		ug/Kg	5.0	1.4	04/21/24	04/23/24
4,4'-DDE	ND		ug/Kg	5.0	1.4	04/21/24	04/23/24
Endrin	ND		ug/Kg	5.0	1.6	04/21/24	04/23/24
Endosulfan II	ND		ug/Kg	5.0	1.6	04/21/24	04/23/24
Endosulfan sulfate	ND		ug/Kg	5.0	1.6	04/21/24	04/23/24
4,4'-DDD	ND		ug/Kg	5.0	1.1	04/21/24	04/23/24
Endrin aldehyde	ND		ug/Kg	5.0	1.7	04/21/24	04/23/24
Endrin ketone	ND		ug/Kg	5.0	1.4	04/21/24	04/23/24
4,4'-DDT	ND		ug/Kg	5.0	1.4	04/21/24	04/23/24
Methoxychlor	ND		ug/Kg	10	5.1	04/21/24	04/23/24
Toxaphene	ND		ug/Kg	100	15	04/21/24	04/23/24
Chlordane (Technical)	ND		ug/Kg	50	11	04/21/24	04/23/24
Surrogates				Limits			
TCMX	109%		%REC	23-120		04/21/24	04/23/24
Decachlorobiphenyl	108%		%REC	24-120		04/21/24	04/23/24
Method: EPA 8082 Prep Method: EPA 3546							
Aroclor-1016	ND		ug/Kg	50	14	04/21/24	04/23/24
Aroclor-1221	ND		ug/Kg	50	23	04/21/24	04/23/24
Aroclor-1232	ND		ug/Kg	50	19	04/21/24	04/23/24
Aroclor-1242	ND		ug/Kg	50	18	04/21/24	04/23/24
Aroclor-1248	ND		ug/Kg	50	21	04/21/24	04/23/24
Aroclor-1254	ND		ug/Kg	50	6.6	04/21/24	04/23/24
Aroclor-1260	ND		ug/Kg	50	24	04/21/24	04/23/24
Aroclor-1262	ND		ug/Kg	50	16	04/21/24	04/23/24
Aroclor-1268	ND		ug/Kg	50	13	04/21/24	04/23/24
Surrogates				Limits			
Decachlorobiphenyl (PCB)	113%		%REC	19-121		04/21/24	04/23/24

Type: Lab Control Sample Lab ID: QC1146473 Batch: 338342

Matrix: Soil Method: EPA 8081A Prep Method: EPA 3546

QC1146473 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
alpha-BHC	48.54	49.50	ug/Kg	98%		22-129
beta-BHC	49.79	49.50	ug/Kg	101%		28-125
gamma-BHC	50.28	49.50	ug/Kg	102%		22-128
delta-BHC	51.37	49.50	ug/Kg	104%		24-131
Heptachlor	47.09	49.50	ug/Kg	95%		18-124
Aldrin	51.63	49.50	ug/Kg	104%		23-120
Heptachlor epoxide	44.83	49.50	ug/Kg	91%		26-120
Endosulfan I	45.22	49.50	ug/Kg	91%		25-126
Dieldrin	47.05	49.50	ug/Kg	95%		23-124
4,4'-DDE	48.40	49.50	ug/Kg	98%		28-121
Endrin	48.29	49.50	ug/Kg	98%		25-127
Endosulfan II	48.07	49.50	ug/Kg	97%		29-121
Endosulfan sulfate	45.25	49.50	ug/Kg	91%		30-121
4,4'-DDD	50.49	49.50	ug/Kg	102%	#	26-120
Endrin aldehyde	9.027	49.50	ug/Kg	18%		10-120
Endrin ketone	50.17	49.50	ug/Kg	101%		28-125
4,4'-DDT	54.02	49.50	ug/Kg	109%	#	22-125
Methoxychlor	57.05	49.50	ug/Kg	115%		28-130
Surrogates						
TCMX	46.76	49.50	ug/Kg	94%		23-120
Decachlorobiphenyl	52.02	49.50	ug/Kg	105%		24-120

Type: Matrix Spike Lab ID: QC1146474 Batch: 338342

Matrix (Source ID): Soil (506496-001) Method: EPA 8081A Prep Method: EPA 3546

		Source Sample						
QC1146474 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	53.81	ND	49.50	ug/Kg	109%		46-120	0.99
beta-BHC	55.75	ND	49.50	ug/Kg	113%		41-120	0.99
gamma-BHC	55.89	ND	49.50	ug/Kg	113%		41-120	0.99
delta-BHC	52.07	ND	49.50	ug/Kg	105%		38-123	0.99
Heptachlor	54.62	ND	49.50	ug/Kg	110%		39-120	0.99
Aldrin	54.08	ND	49.50	ug/Kg	109%		34-120	0.99
Heptachlor epoxide	49.63	ND	49.50	ug/Kg	100%		43-120	0.99
Endosulfan I	52.69	ND	49.50	ug/Kg	106%		45-120	0.99
Dieldrin	53.95	ND	49.50	ug/Kg	109%		45-120	0.99
4,4'-DDE	74.52	26.22	49.50	ug/Kg	98%		34-120	0.99
Endrin	53.68	ND	49.50	ug/Kg	108%		40-120	0.99
Endosulfan II	52.03	ND	49.50	ug/Kg	105%		41-120	0.99
Endosulfan sulfate	49.71	ND	49.50	ug/Kg	100%		42-120	0.99
4,4'-DDD	51.21	ND	49.50	ug/Kg	103%		41-120	0.99
Endrin aldehyde	44.45	ND	49.50	ug/Kg	90%		30-120	0.99
Endrin ketone	52.67	ND	49.50	ug/Kg	106%	#	45-120	0.99
4,4'-DDT	59.42	ND	49.50	ug/Kg	120%		35-127	0.99
Methoxychlor	65.85	ND	49.50	ug/Kg	133%		42-136	0.99
Surrogates								
TCMX	49.45		49.50	ug/Kg	100%		23-120	0.99
Decachlorobiphenyl	50.87		49.50	ug/Kg	103%		24-120	0.99

Type: Matrix Spike Duplicate Lab ID: QC1146475 Batch: 338342

Matrix (Source ID): Soil (506496-001) Method: EPA 8081A Prep Method: EPA 3546

		Source							DDD	
QC1146475 Analyte	Result	Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
alpha-BHC	55.70	ND	51.02	ug/Kg	109%		46-120	0	30	1
beta-BHC	53.13	ND	51.02	ug/Kg	104%		41-120	8	30	1
gamma-BHC	56.35	ND	51.02	ug/Kg	110%		41-120	2	30	1
delta-BHC	50.14	ND	51.02	ug/Kg	98%		38-123	7	30	1
Heptachlor	55.15	ND	51.02	ug/Kg	108%		39-120	2	30	1
Aldrin	53.06	ND	51.02	ug/Kg	104%		34-120	5	30	1
Heptachlor epoxide	47.29	ND	51.02	ug/Kg	93%		43-120	8	30	1
Endosulfan I	50.16	ND	51.02	ug/Kg	98%		45-120	8	30	1
Dieldrin	52.70	ND	51.02	ug/Kg	103%		45-120	5	30	1
4,4'-DDE	71.39	26.22	51.02	ug/Kg	89%		34-120	6	30	1
Endrin	52.49	ND	51.02	ug/Kg	103%		40-120	5	30	1
Endosulfan II	48.17	ND	51.02	ug/Kg	94%		41-120	11	30	1
Endosulfan sulfate	44.74	ND	51.02	ug/Kg	88%		42-120	14	30	1
4,4'-DDD	48.87	ND	51.02	ug/Kg	96%		41-120	8	30	1
Endrin aldehyde	39.26	ND	51.02	ug/Kg	77%		30-120	15	30	1
Endrin ketone	47.58	ND	51.02	ug/Kg	93%	#	45-120	13	30	1
4,4'-DDT	55.09	ND	51.02	ug/Kg	108%		35-127	11	30	1
Methoxychlor	56.34	ND	51.02	ug/Kg	110%		42-136	19	30	1
Surrogates										
TCMX	47.60		51.02	ug/Kg	93%		23-120			1
Decachlorobiphenyl	44.28		51.02	ug/Kg	87%		24-120			1

Type: Lab Control Sample Lab ID: QC1146476 Batch: 338342

Matrix: Soil Method: EPA 8082 Prep Method: EPA 3546

QC1146476 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Aroclor-1016	657.5	500.0	ug/Kg	131%		14-150
Aroclor-1260	590.3	500.0	ug/Kg	118%		10-150
Surrogates						
Decachlorobiphenyl (PCB)	53.29	50.00	ug/Kg	107%		19-121

Type: Matrix Spike Lab ID: QC1146477 Batch: 338342

Matrix (Source ID): Soil (506595-008) Method: EPA 8082 Prep Method: EPA 3546

Basis: Dry

QC1146477 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
Aroclor-1016	620.8	ND	560.7	ug/Kg	111%		42-127	1
Aroclor-1260	622.0	ND	560.7	ug/Kg	111%		38-130	1
Surrogates								
Decachlorobiphenyl (PCB)	59.05		56.07	ug/Kg	105%		19-121	1

Type: Matrix Spike Duplicate Lab ID: QC1146478 Batch: 338342

Matrix (Source ID): Soil (506595-008) Method: EPA 8082 Prep Method: EPA 3546

Basis: Dry

Source Sample RPD QC1146478 Analyte Result Result **Spiked** Units Recovery Qual Limits **RPD** Lim DF Aroclor-1016 0.99 567.8 ND 544.0 ug/Kg 104% 42-127 6 30 Aroclor-1260 559.9 ND 544.0 ug/Kg 103% 38-130 30 0.99 Surrogates Decachlorobiphenyl (PCB) 49.64 91% 19-121 54.40 ug/Kg 0.99

Type: Blank Lab ID: QC1146665 Batch: 338386

Matrix: Soil Method: EPA 8082 Prep Method: EPA 3546

QC1146665 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Aroclor-1016	ND		ug/Kg	50	14	04/22/24	04/23/24
Aroclor-1221	ND		ug/Kg	50	23	04/22/24	04/23/24
Aroclor-1232	ND		ug/Kg	50	19	04/22/24	04/23/24
Aroclor-1242	ND		ug/Kg	50	18	04/22/24	04/23/24
Aroclor-1248	ND		ug/Kg	50	21	04/22/24	04/23/24
Aroclor-1254	ND		ug/Kg	50	6.6	04/22/24	04/23/24
Aroclor-1260	ND		ug/Kg	50	25	04/22/24	04/23/24
Aroclor-1262	ND		ug/Kg	50	16	04/22/24	04/23/24
Aroclor-1268	ND		ug/Kg	50	14	04/22/24	04/23/24
Surrogates				Limits			
Decachlorobiphenyl (PCB)	89%		%REC	19-121		04/22/24	04/23/24

Type: Lab Control Sample Lab ID: QC1146673 Batch: 338386

Matrix: Soil Method: EPA 8082 Prep Method: EPA 3546

QC1146673 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Aroclor-1016	488.5	495.0	ug/Kg	99%	14-150
Aroclor-1260	482.7	495.0	ug/Kg	98%	10-150
Surrogates					
Decachlorobiphenyl (PCB)	52.88	49.50	ug/Kg	107%	19-121

Type: Matrix Spike Lab ID: QC1146674 Batch: 338386

Matrix (Source ID): Soil (506597-014) Method: EPA 8082 Prep Method: EPA 3546

Basis: Dry

Source Sample QC1146674 Analyte Result Result **Spiked Units** Recovery Qual Limits DF Aroclor-1016 457.2 ND 500.1 ug/Kg 91% 42-127 0.99 Aroclor-1260 440.4 ND 500.1 88% 38-130 0.99 ug/Kg Surrogates Decachlorobiphenyl (PCB) 32.65 0.99 50.01 ug/Kg 65% 19-121

Type: Matrix Spike Duplicate Lab ID: QC1146675 Batch: 338386

Matrix (Source ID): Soil (506597-014) Method: EPA 8082 Prep Method: EPA 3546

Basis: Dry

Source Sample RPD QC1146675 Analyte Result Result **Spiked Units** Recovery Qual Limits **RPD** Lim DF Aroclor-1016 512.6 500.1 103% 42-127 30 0.99 ND ug/Kg 11 Aroclor-1260 568.1 ND 500.1 ug/Kg 114% 38-130 25 30 0.99 Surrogates Decachlorobiphenyl (PCB) 42.95 50.01 ug/Kg 86% 19-121 0.99

Type: Lab Control Sample Lab ID: QC1147272 Batch: 338583

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC1147272 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	49.35	50.00	ug/Kg	99%	70-131
MTBE	53.00	50.00	ug/Kg	106%	69-130
Benzene	52.42	50.00	ug/Kg	105%	70-130
Trichloroethene	57.46	50.00	ug/Kg	115%	70-130
Toluene	52.56	50.00	ug/Kg	105%	70-130
Chlorobenzene	52.70	50.00	ug/Kg	105%	70-130
Surrogates					
Dibromofluoromethane	47.87	50.00	ug/Kg	96%	70-130
1,2-Dichloroethane-d4	49.88	50.00	ug/Kg	100%	70-145
Toluene-d8	49.12	50.00	ug/Kg	98%	70-145
Bromofluorobenzene	48.17	50.00	ug/Kg	96%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1147273 Batch: 338583

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC1147273 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
1,1-Dichloroethene	47.47	50.00	ug/Kg	95%		70-131	4	33
MTBE	51.88	50.00	ug/Kg	104%		69-130	2	30
Benzene	51.46	50.00	ug/Kg	103%		70-130	2	30
Trichloroethene	54.94	50.00	ug/Kg	110%		70-130	4	30
Toluene	50.97	50.00	ug/Kg	102%		70-130	3	30
Chlorobenzene	51.32	50.00	ug/Kg	103%		70-130	3	30
Surrogates								
Dibromofluoromethane	47.38	50.00	ug/Kg	95%		70-130		
1,2-Dichloroethane-d4	49.54	50.00	ug/Kg	99%		70-145		
Toluene-d8	48.50	50.00	ug/Kg	97%		70-145		
Bromofluorobenzene	47.21	50.00	ug/Kg	94%		70-145		

Type: Matrix Spike Lab ID: QC1147274 Batch: 338583

Matrix (Source ID): Soil (506601-010) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1147274 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	49.67	ND	50.00	ug/Kg	99%		70-141	1
MTBE	52.50	ND	50.00	ug/Kg	105%		59-130	1
Benzene	51.14	ND	50.00	ug/Kg	102%		70-130	1
Trichloroethene	54.77	ND	50.00	ug/Kg	110%		69-130	1
Toluene	50.69	ND	50.00	ug/Kg	101%		70-130	1
Chlorobenzene	51.27	ND	50.00	ug/Kg	103%		70-130	1
Surrogates								
Dibromofluoromethane	48.42		50.00	ug/Kg	97%		70-145	1
1,2-Dichloroethane-d4	48.92		50.00	ug/Kg	98%		70-145	1
Toluene-d8	48.81		50.00	ug/Kg	98%		70-145	1
Bromofluorobenzene	48.75		50.00	ug/Kg	98%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1147275 Batch: 338583

Matrix (Source ID): Soil (506601-010) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1147275 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	47.67	ND	50.00	ug/Kg	95%		70-141	4	43	1
MTBE	50.84	ND	50.00	ug/Kg	102%		59-130	3	30	1
Benzene	49.41	ND	50.00	ug/Kg	99%		70-130	3	30	1
Trichloroethene	52.82	ND	50.00	ug/Kg	106%		69-130	4	30	1
Toluene	48.46	ND	50.00	ug/Kg	97%		70-130	4	30	1
Chlorobenzene	50.07	ND	50.00	ug/Kg	100%		70-130	2	30	1
Surrogates										
Dibromofluoromethane	47.49		50.00	ug/Kg	95%		70-145			1
1,2-Dichloroethane-d4	49.21		50.00	ug/Kg	98%		70-145			1
Toluene-d8	48.17		50.00	ug/Kg	96%		70-145			1
Bromofluorobenzene	48.36		50.00	ug/Kg	97%		70-145			1

Type: Blank Lab ID: QC1147276 Batch: 338583

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

Matrix. 3011	WELLIOU. LF		Frep Method. LFA 3033					
QC1147276 Analyte	Result	Qual U	Jnits	RL	MDL	Prepared	Analyzed	
3-Chloropropene	ND	u	g/Kg	5.0	8.0	04/23/24	04/23/24	
cis-1,4-Dichloro-2-butene	ND	u	g/Kg	5.0	1.6	04/23/24	04/23/24	
trans-1,4-Dichloro-2-butene	ND	u	g/Kg	5.0	2.4	04/23/24	04/23/24	
Freon 12	ND	u	g/Kg	5.0	1.8	04/23/24	04/23/24	
Chloromethane	ND	u	g/Kg	5.0	2.3	04/23/24	04/23/24	
Vinyl Chloride	ND	u	g/Kg	5.0	2.2	04/23/24	04/23/24	
Bromomethane	ND	u	g/Kg	5.0	2.2	04/23/24	04/23/24	
Chloroethane	ND	u	g/Kg	5.0	1.4	04/23/24	04/23/24	
Trichlorofluoromethane	ND	u	g/Kg	5.0	1.4	04/23/24	04/23/24	
Acetone	ND	u	g/Kg	100	61	04/23/24	04/23/24	
Freon 113	ND	u	g/Kg	5.0	0.8	04/23/24	04/23/24	
1,1-Dichloroethene	ND	u	g/Kg	5.0	1.3	04/23/24	04/23/24	
Methylene Chloride	ND		g/Kg	5.0	3.7	04/23/24	04/23/24	
MTBE	ND	u	g/Kg	5.0	0.9	04/23/24	04/23/24	
trans-1,2-Dichloroethene	ND		g/Kg	5.0	1.2	04/23/24	04/23/24	
1,1-Dichloroethane	ND		g/Kg	5.0	1.7	04/23/24	04/23/24	
2-Butanone	ND		g/Kg	100	7.3	04/23/24	04/23/24	
cis-1,2-Dichloroethene	ND		g/Kg	5.0	1.7	04/23/24	04/23/24	
2,2-Dichloropropane	ND		g/Kg	5.0	0.9	04/23/24	04/23/24	
Chloroform	ND		g/Kg	5.0	0.8	04/23/24	04/23/24	
Bromochloromethane	ND		g/Kg	5.0	1.6	04/23/24	04/23/24	
1,1,1-Trichloroethane	ND		g/Kg	5.0	1.2	04/23/24	04/23/24	
1,1-Dichloropropene	ND		g/Kg	5.0	1.2	04/23/24	04/23/24	
Carbon Tetrachloride	ND		g/Kg	5.0	1.5	04/23/24	04/23/24	
1,2-Dichloroethane	ND		g/Kg	5.0	1.2	04/23/24	04/23/24	
Benzene	ND		g/Kg	5.0	1.1	04/23/24	04/23/24	
Trichloroethene	ND		g/Kg	5.0	0.8	04/23/24	04/23/24	
1,2-Dichloropropane	ND		g/Kg	5.0	2.3	04/23/24	04/23/24	
Bromodichloromethane	ND		g/Kg	5.0	1.3	04/23/24	04/23/24	
Dibromomethane	ND		g/Kg	5.0	1.8	04/23/24	04/23/24	
4-Methyl-2-Pentanone	ND		g/Kg	5.0	2.1	04/23/24	04/23/24	
cis-1,3-Dichloropropene	ND		g/Kg	5.0	0.9	04/23/24	04/23/24	
Toluene	ND		g/Kg	5.0	1.3	04/23/24	04/23/24	
trans-1,3-Dichloropropene	ND		g/Kg	5.0	0.7	04/23/24	04/23/24	
1,1,2-Trichloroethane	ND		g/Kg	5.0	1.8	04/23/24	04/23/24	
1,3-Dichloropropane	ND		g/Kg	5.0	1.4	04/23/24	04/23/24	
Tetrachloroethene	ND		g/Kg	5.0	1.1	04/23/24	04/23/24	
Dibromochloromethane	ND ND		g/Kg	5.0	0.9	04/23/24	04/23/24	
1,2-Dibromoethane	ND ND		g/Kg g/Kg	5.0	1.3	04/23/24	04/23/24	
Chlorobenzene	ND		g/Kg g/Kg	5.0	0.8	04/23/24	04/23/24	
1,1,1,2-Tetrachloroethane	ND ND		g/Kg g/Kg	5.0	1.1	04/23/24	04/23/24	
Ethylbenzene	ND ND		g/Kg g/Kg	5.0	0.9	04/23/24	04/23/24	
m,p-Xylenes	ND ND			10	1.9	04/23/24	04/23/24	
			g/Kg					
o-Xylene Styrono	ND		g/Kg	5.0	1.0	04/23/24	04/23/24	
Styrene	ND		g/Kg	5.0	1.1	04/23/24	04/23/24	
Bromoform	ND		g/Kg	5.0	0.7	04/23/24	04/23/24	
Isopropylbenzene	ND	u	g/Kg	5.0	0.7	04/23/24	04/23/24	

QC1147276 Analyte	Result	Qual Units	RL	MDL	Prepared	Analyzed
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5.0	2.1	04/23/24	04/23/24
1,2,3-Trichloropropane	ND	ug/Kg	5.0	1.5	04/23/24	04/23/24
Propylbenzene	ND	ug/Kg	5.0	0.7	04/23/24	04/23/24
Bromobenzene	ND	ug/Kg	5.0	1.1	04/23/24	04/23/24
1,3,5-Trimethylbenzene	ND	ug/Kg	5.0	0.6	04/23/24	04/23/24
2-Chlorotoluene	ND	ug/Kg	5.0	1.3	04/23/24	04/23/24
4-Chlorotoluene	ND	ug/Kg	5.0	1.1	04/23/24	04/23/24
tert-Butylbenzene	ND	ug/Kg	5.0	0.6	04/23/24	04/23/24
1,2,4-Trimethylbenzene	ND	ug/Kg	5.0	0.8	04/23/24	04/23/24
sec-Butylbenzene	ND	ug/Kg	5.0	0.7	04/23/24	04/23/24
para-Isopropyl Toluene	ND	ug/Kg	5.0	0.7	04/23/24	04/23/24
1,3-Dichlorobenzene	ND	ug/Kg	5.0	1.4	04/23/24	04/23/24
1,4-Dichlorobenzene	ND	ug/Kg	5.0	1.1	04/23/24	04/23/24
n-Butylbenzene	ND	ug/Kg	5.0	0.9	04/23/24	04/23/24
1,2-Dichlorobenzene	ND	ug/Kg	5.0	0.8	04/23/24	04/23/24
1,2-Dibromo-3-Chloropropane	ND	ug/Kg	5.0	1.7	04/23/24	04/23/24
1,2,4-Trichlorobenzene	ND	ug/Kg	5.0	1.3	04/23/24	04/23/24
Hexachlorobutadiene	ND	ug/Kg	5.0	1.2	04/23/24	04/23/24
Naphthalene	ND	ug/Kg	5.0	1.3	04/23/24	04/23/24
1,2,3-Trichlorobenzene	ND	ug/Kg	5.0	0.7	04/23/24	04/23/24
Xylene (total)	ND	ug/Kg	5.0		04/23/24	04/23/24
Surrogates			Limits			
Dibromofluoromethane	91%	%REC	70-130		04/23/24	04/23/24
1,2-Dichloroethane-d4	97%	%REC	70-145		04/23/24	04/23/24
Toluene-d8	98%	%REC	70-145		04/23/24	04/23/24
Bromofluorobenzene	97%	%REC	70-145		04/23/24	04/23/24

Type: Matrix Spike Lab ID: QC1147660 Batch: 338690

Matrix (Source ID): Soil (506629-016) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1147660 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	47.50	ND	50.00	ug/Kg	95%		70-141	1
MTBE	42.74	ND	50.00	ug/Kg	85%		59-130	1
Benzene	44.26	ND	50.00	ug/Kg	89%		70-130	1
Trichloroethene	43.27	ND	50.00	ug/Kg	87%		69-130	1
Toluene	40.60	ND	50.00	ug/Kg	81%		70-130	1
Chlorobenzene	36.72	ND	50.00	ug/Kg	73%		70-130	1
Surrogates								
Dibromofluoromethane	47.98		50.00	ug/Kg	96%		70-145	1
1,2-Dichloroethane-d4	52.49		50.00	ug/Kg	105%		70-145	1
Toluene-d8	47.64		50.00	ug/Kg	95%		70-145	1
Bromofluorobenzene	48.32		50.00	ug/Kg	97%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1147661 Batch: 338690

Matrix (Source ID): Soil (506629-016) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1147661 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	48.37	ND	50.00	ug/Kg	97%		70-141	2	43	1
MTBE	39.79	ND	50.00	ug/Kg	80%		59-130	7	30	1
Benzene	43.29	ND	50.00	ug/Kg	87%		70-130	2	30	1
Trichloroethene	42.30	ND	50.00	ug/Kg	85%		69-130	2	30	1
Toluene	39.20	ND	50.00	ug/Kg	78%		70-130	4	30	1
Chlorobenzene	34.08	ND	50.00	ug/Kg	68%	*	70-130	7	30	1
Surrogates										
Dibromofluoromethane	48.81		50.00	ug/Kg	98%		70-145			1
1,2-Dichloroethane-d4	53.24		50.00	ug/Kg	106%		70-145			1
Toluene-d8	47.11		50.00	ug/Kg	94%		70-145			1
Bromofluorobenzene	48.24		50.00	ug/Kg	96%		70-145			1

Type: Lab Control Sample Lab ID: QC1147663 Batch: 338690

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC1147663 Analyte	Result	Spiked	Units	Recovery Qual	Limits
1,1-Dichloroethene	49.19	50.00	ug/Kg	98%	70-131
MTBE	47.52	50.00	ug/Kg	95%	69-130
Benzene	51.42	50.00	ug/Kg	103%	70-130
Trichloroethene	54.35	50.00	ug/Kg	109%	70-130
Toluene	49.35	50.00	ug/Kg	99%	70-130
Chlorobenzene	49.56	50.00	ug/Kg	99%	70-130
Surrogates					
Dibromofluoromethane	48.71	50.00	ug/Kg	97%	70-130
1,2-Dichloroethane-d4	51.30	50.00	ug/Kg	103%	70-145
Toluene-d8	47.41	50.00	ug/Kg	95%	70-145
Bromofluorobenzene	47.43	50.00	ug/Kg	95%	70-145

Type: Lab Control Sample Duplicate Lab ID: QC1147664 Batch: 338690

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

QC1147664 Analyte	Result	Spiked	Units	Recovery Qua	I Limits	RPD	RPD Lim
1,1-Dichloroethene	48.42	50.00	ug/Kg	97%	70-131	2	33
MTBE	48.17	50.00	ug/Kg	96%	69-130	1	30
Benzene	50.80	50.00	ug/Kg	102%	70-130	1	30
Trichloroethene	52.55	50.00	ug/Kg	105%	70-130	3	30
Toluene	49.15	50.00	ug/Kg	98%	70-130	0	30
Chlorobenzene	49.19	50.00	ug/Kg	98%	70-130	1	30
Surrogates							
Dibromofluoromethane	48.03	50.00	ug/Kg	96%	70-130		
1,2-Dichloroethane-d4	50.05	50.00	ug/Kg	100%	70-145		
Toluene-d8	47.50	50.00	ug/Kg	95%	70-145		
Bromofluorobenzene	47.60	50.00	ug/Kg	95%	70-145		_

Type: Blank Lab ID: QC1147665 Batch: 338690 Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

Matrix. 3011	WELLIOU. LF	Frep Method. LFA 3033					
QC1147665 Analyte	Result	Qual U	nits	RL	MDL	Prepared	Analyzed
3-Chloropropene	ND	U,	g/Kg	5.0	8.0	04/24/24	04/24/24
cis-1,4-Dichloro-2-butene	ND	U,	g/Kg	5.0	1.6	04/24/24	04/24/24
trans-1,4-Dichloro-2-butene	ND	U,	g/Kg	5.0	2.4	04/24/24	04/24/24
Freon 12	ND	U,	g/Kg	5.0	1.8	04/24/24	04/24/24
Chloromethane	ND	U,	g/Kg	5.0	2.3	04/24/24	04/24/24
Vinyl Chloride	ND	U,	g/Kg	5.0	2.2	04/24/24	04/24/24
Bromomethane	ND	U,	g/Kg	5.0	2.2	04/24/24	04/24/24
Chloroethane	ND	u	g/Kg	5.0	1.4	04/24/24	04/24/24
Trichlorofluoromethane	ND	U,	g/Kg	5.0	1.4	04/24/24	04/24/24
Acetone	ND	U,	g/Kg	100	61	04/24/24	04/24/24
Freon 113	ND	U,	g/Kg	5.0	0.8	04/24/24	04/24/24
1,1-Dichloroethene	ND	U	g/Kg	5.0	1.3	04/24/24	04/24/24
Methylene Chloride	ND		g/Kg	5.0	3.7	04/24/24	04/24/24
MTBE	ND	U	g/Kg	5.0	0.9	04/24/24	04/24/24
trans-1,2-Dichloroethene	ND		g/Kg	5.0	1.2	04/24/24	04/24/24
1,1-Dichloroethane	ND		g/Kg	5.0	1.7	04/24/24	04/24/24
2-Butanone	ND		g/Kg	100	7.3	04/24/24	04/24/24
cis-1,2-Dichloroethene	ND		g/Kg	5.0	1.7	04/24/24	04/24/24
2,2-Dichloropropane	ND		g/Kg	5.0	0.9	04/24/24	04/24/24
Chloroform	ND		g/Kg	5.0	0.8	04/24/24	04/24/24
Bromochloromethane	ND		g/Kg	5.0	1.6	04/24/24	04/24/24
1,1,1-Trichloroethane	ND		g/Kg	5.0	1.2	04/24/24	04/24/24
1,1-Dichloropropene	ND		g/Kg	5.0	1.2	04/24/24	04/24/24
Carbon Tetrachloride	ND		g/Kg	5.0	1.5	04/24/24	04/24/24
1,2-Dichloroethane	ND		g/Kg	5.0	1.2	04/24/24	04/24/24
Benzene	ND		g/Kg	5.0	1.1	04/24/24	04/24/24
Trichloroethene	ND		g/Kg	5.0	0.8	04/24/24	04/24/24
1,2-Dichloropropane	ND		g/Kg	5.0	2.3	04/24/24	04/24/24
Bromodichloromethane	ND		g/Kg	5.0	1.3	04/24/24	04/24/24
Dibromomethane	ND		g/Kg	5.0	1.8	04/24/24	04/24/24
4-Methyl-2-Pentanone	ND		g/Kg	5.0	2.1	04/24/24	04/24/24
cis-1,3-Dichloropropene	ND		g/Kg	5.0	0.9	04/24/24	04/24/24
Toluene	ND		g/Kg	5.0	1.3	04/24/24	04/24/24
trans-1,3-Dichloropropene	ND		g/Kg	5.0	0.7	04/24/24	04/24/24
1,1,2-Trichloroethane	ND		g/Kg	5.0	1.8	04/24/24	04/24/24
1,3-Dichloropropane	ND ND		g/Kg	5.0	1.4	04/24/24	04/24/24
Tetrachloroethene	ND		g/Kg	5.0	1.1	04/24/24	04/24/24
Dibromochloromethane	ND ND		g/Kg g/Kg	5.0	0.9	04/24/24	04/24/24
1,2-Dibromoethane	ND ND		g/Kg g/Kg	5.0	1.3	04/24/24	04/24/24
Chlorobenzene	ND		g/Kg g/Kg	5.0	0.8	04/24/24	04/24/24
1,1,1,2-Tetrachloroethane	ND ND		g/Kg g/Kg	5.0	1.1	04/24/24	04/24/24
Ethylbenzene	ND ND		g/Kg g/Kg	5.0	0.9	04/24/24	04/24/24
m,p-Xylenes	ND ND			10	1.9	04/24/24	04/24/24
			g/Kg				
o-Xylene Styrono	ND		g/Kg	5.0	1.0	04/24/24	04/24/24
Styrene	ND		g/Kg	5.0	1.1	04/24/24	04/24/24
Bromoform	ND		g/Kg	5.0	0.7	04/24/24	04/24/24
Isopropylbenzene	ND	u	g/Kg	5.0	0.7	04/24/24	04/24/24

QC1147665 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.0	2.1	04/24/24	04/24/24
1,2,3-Trichloropropane	ND		ug/Kg	5.0	1.5	04/24/24	04/24/24
Propylbenzene	ND		ug/Kg	5.0	0.7	04/24/24	04/24/24
Bromobenzene	ND		ug/Kg	5.0	1.1	04/24/24	04/24/24
1,3,5-Trimethylbenzene	ND		ug/Kg	5.0	0.6	04/24/24	04/24/24
2-Chlorotoluene	ND		ug/Kg	5.0	1.3	04/24/24	04/24/24
4-Chlorotoluene	ND		ug/Kg	5.0	1.1	04/24/24	04/24/24
tert-Butylbenzene	ND		ug/Kg	5.0	0.6	04/24/24	04/24/24
1,2,4-Trimethylbenzene	ND		ug/Kg	5.0	0.8	04/24/24	04/24/24
sec-Butylbenzene	ND		ug/Kg	5.0	0.7	04/24/24	04/24/24
para-Isopropyl Toluene	ND		ug/Kg	5.0	0.7	04/24/24	04/24/24
1,3-Dichlorobenzene	ND		ug/Kg	5.0	1.4	04/24/24	04/24/24
1,4-Dichlorobenzene	ND		ug/Kg	5.0	1.1	04/24/24	04/24/24
n-Butylbenzene	ND		ug/Kg	5.0	0.9	04/24/24	04/24/24
1,2-Dichlorobenzene	ND		ug/Kg	5.0	0.8	04/24/24	04/24/24
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.0	1.7	04/24/24	04/24/24
1,2,4-Trichlorobenzene	ND		ug/Kg	5.0	1.3	04/24/24	04/24/24
Hexachlorobutadiene	ND		ug/Kg	5.0	1.2	04/24/24	04/24/24
Naphthalene	ND		ug/Kg	5.0	1.3	04/24/24	04/24/24
1,2,3-Trichlorobenzene	ND		ug/Kg	5.0	0.7	04/24/24	04/24/24
Xylene (total)	ND		ug/Kg	5.0		04/24/24	04/24/24
Surrogates				Limits			
Dibromofluoromethane	95%		%REC	70-130		04/24/24	04/24/24
1,2-Dichloroethane-d4	103%		%REC	70-145		04/24/24	04/24/24
Toluene-d8	95%		%REC	70-145		04/24/24	04/24/24
Bromofluorobenzene	95%		%REC	70-145		04/24/24	04/24/24

Type: Lab Control Sample Lab ID: QC1147731 Batch: 338712

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

Result	Spiked	Units	Recovery Qual	Limits
42.95	50.00	ug/Kg	86%	70-131
40.74	50.00	ug/Kg	81%	69-130
41.92	50.00	ug/Kg	84%	70-130
39.41	50.00	ug/Kg	79%	70-130
41.35	50.00	ug/Kg	83%	70-130
42.81	50.00	ug/Kg	86%	70-130
48.84	50.00	ug/Kg	98%	70-130
50.20	50.00	ug/Kg	100%	70-145
49.88	50.00	ug/Kg	100%	70-145
51.56	50.00	ug/Kg	103%	70-145
	42.95 40.74 41.92 39.41 41.35 42.81 48.84 50.20 49.88	42.95 50.00 40.74 50.00 41.92 50.00 39.41 50.00 41.35 50.00 42.81 50.00 48.84 50.00 50.20 50.00 49.88 50.00	42.95 50.00 ug/Kg 40.74 50.00 ug/Kg 41.92 50.00 ug/Kg 39.41 50.00 ug/Kg 41.35 50.00 ug/Kg 42.81 50.00 ug/Kg 48.84 50.00 ug/Kg 50.20 50.00 ug/Kg 49.88 50.00 ug/Kg	42.95 50.00 ug/Kg 86% 40.74 50.00 ug/Kg 81% 41.92 50.00 ug/Kg 84% 39.41 50.00 ug/Kg 79% 41.35 50.00 ug/Kg 83% 42.81 50.00 ug/Kg 86% 48.84 50.00 ug/Kg 98% 50.20 50.00 ug/Kg 100% 49.88 50.00 ug/Kg 100%

Type: Lab Control Sample Duplicate Lab ID: QC1147732 Batch: 338712

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

OC11/17722 Analysta	Result	Chikad	Units	Recovery Qua	l Limits	RPD	RPD Lim
QC1147732 Analyte	nesuit	Spiked		Recovery Qua	Limits	RPU	
1,1-Dichloroethene	45.63	50.00	ug/Kg	91%	70-131	6	33
MTBE	43.39	50.00	ug/Kg	87%	69-130	6	30
Benzene	44.80	50.00	ug/Kg	90%	70-130	7	30
Trichloroethene	47.11	50.00	ug/Kg	94%	70-130	18	30
Toluene	44.87	50.00	ug/Kg	90%	70-130	8	30
Chlorobenzene	47.60	50.00	ug/Kg	95%	70-130	11	30
Surrogates							
Dibromofluoromethane	47.29	50.00	ug/Kg	95%	70-130		
1,2-Dichloroethane-d4	48.36	50.00	ug/Kg	97%	70-145		
Toluene-d8	50.29	50.00	ug/Kg	101%	70-145		
Bromofluorobenzene	51.54	50.00	ug/Kg	103%	70-145		

Type: Blank Lab ID: QC1147735 Batch: 338712

Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

Matrix. 3011	Mictiliou. El /	Method. LFA 0200B				Frep Method. LFA 3033					
QC1147735 Analyte	Result	Qual U	Inits	RL	MDL	Prepared	Analyzed				
3-Chloropropene	ND	u	g/Kg	5.0	1.2	04/25/24	04/25/24				
cis-1,4-Dichloro-2-butene	ND	u	g/Kg	5.0	1.9	04/25/24	04/25/24				
trans-1,4-Dichloro-2-butene	ND	u	g/Kg	5.0	1.0	04/25/24	04/25/24				
Freon 12	ND	u	g/Kg	5.0	0.9	04/25/24	04/25/24				
Chloromethane	ND	u	g/Kg	5.0	0.8	04/25/24	04/25/24				
Vinyl Chloride	ND	u	g/Kg	5.0	1.0	04/25/24	04/25/24				
Bromomethane	ND	u	g/Kg	5.0	1.1	04/25/24	04/25/24				
Chloroethane	ND	u	g/Kg	5.0	2.5	04/25/24	04/25/24				
Trichlorofluoromethane	ND	u	g/Kg	5.0	0.8	04/25/24	04/25/24				
Acetone	ND	u	g/Kg	100	32	04/25/24	04/25/24				
Freon 113	ND	u	g/Kg	5.0	0.7	04/25/24	04/25/24				
1,1-Dichloroethene	ND	u	g/Kg	5.0	1.0	04/25/24	04/25/24				
Methylene Chloride	ND		g/Kg	5.0	3.4	04/25/24	04/25/24				
MTBE	ND	u	g/Kg	5.0	1.0	04/25/24	04/25/24				
trans-1,2-Dichloroethene	ND		g/Kg	5.0	1.1	04/25/24	04/25/24				
1,1-Dichloroethane	ND		g/Kg	5.0	0.9	04/25/24	04/25/24				
2-Butanone	ND		g/Kg	100	4.3	04/25/24	04/25/24				
cis-1,2-Dichloroethene	ND		g/Kg	5.0	0.8	04/25/24	04/25/24				
2,2-Dichloropropane	ND		g/Kg	5.0	2.5	04/25/24	04/25/24				
Chloroform	ND		g/Kg	5.0	1.0	04/25/24	04/25/24				
Bromochloromethane	ND		g/Kg	5.0	0.4	04/25/24	04/25/24				
1,1,1-Trichloroethane	ND		g/Kg	5.0	1.3	04/25/24	04/25/24				
1,1-Dichloropropene	ND		g/Kg	5.0	0.8	04/25/24	04/25/24				
Carbon Tetrachloride	ND		g/Kg	5.0	1.2	04/25/24	04/25/24				
1,2-Dichloroethane	ND		g/Kg	5.0	1.0	04/25/24	04/25/24				
Benzene	ND		g/Kg	5.0	0.5	04/25/24	04/25/24				
Trichloroethene	ND		g/Kg	5.0	0.7	04/25/24	04/25/24				
1,2-Dichloropropane	ND		g/Kg	5.0	0.8	04/25/24	04/25/24				
Bromodichloromethane	ND		g/Kg	5.0	1.1	04/25/24	04/25/24				
Dibromomethane	ND		g/Kg	5.0	0.5	04/25/24	04/25/24				
4-Methyl-2-Pentanone	ND		g/Kg	5.0	1.6	04/25/24	04/25/24				
cis-1,3-Dichloropropene	ND		g/Kg	5.0	1.0	04/25/24	04/25/24				
Toluene	ND		g/Kg	5.0	0.9	04/25/24	04/25/24				
trans-1,3-Dichloropropene	ND		g/Kg	5.0	1.4	04/25/24	04/25/24				
1,1,2-Trichloroethane	ND		g/Kg	5.0	0.4	04/25/24	04/25/24				
1,3-Dichloropropane	ND		g/Kg	5.0	0.6	04/25/24	04/25/24				
Tetrachloroethene	ND		g/Kg	5.0	0.5	04/25/24	04/25/24				
Dibromochloromethane	ND ND		g/Kg g/Kg	5.0	0.6	04/25/24	04/25/24				
1,2-Dibromoethane	ND ND		g/Kg g/Kg	5.0	0.6	04/25/24	04/25/24				
Chlorobenzene	ND		g/Kg g/Kg	5.0	0.6	04/25/24	04/25/24				
1,1,1,2-Tetrachloroethane	ND ND		g/Kg g/Kg	5.0	0.4	04/25/24	04/25/24				
Ethylbenzene	ND ND		g/Kg g/Kg	5.0	0.7	04/25/24	04/25/24				
m,p-Xylenes	ND ND			10	0.8	04/25/24	04/25/24				
			g/Kg								
o-Xylene Styrono	ND		g/Kg	5.0	0.5	04/25/24	04/25/24				
Styrene	ND		g/Kg	5.0	0.3	04/25/24	04/25/24				
Bromoform	ND		g/Kg	5.0	1.0	04/25/24	04/25/24				
Isopropylbenzene	ND	u	g/Kg	5.0	0.3	04/25/24	04/25/24				

QC1147735 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
1,1,2,2-Tetrachloroethane	ND		ug/Kg	5.0	0.5	04/25/24	04/25/24
1,2,3-Trichloropropane	ND		ug/Kg	5.0	1.2	04/25/24	04/25/24
Propylbenzene	ND		ug/Kg	5.0	0.3	04/25/24	04/25/24
Bromobenzene	ND		ug/Kg	5.0	0.5	04/25/24	04/25/24
1,3,5-Trimethylbenzene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
2-Chlorotoluene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
4-Chlorotoluene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
tert-Butylbenzene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
1,2,4-Trimethylbenzene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
sec-Butylbenzene	ND		ug/Kg	5.0	0.5	04/25/24	04/25/24
para-Isopropyl Toluene	ND		ug/Kg	5.0	0.3	04/25/24	04/25/24
1,3-Dichlorobenzene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
1,4-Dichlorobenzene	ND		ug/Kg	5.0	0.3	04/25/24	04/25/24
n-Butylbenzene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
1,2-Dichlorobenzene	ND		ug/Kg	5.0	0.4	04/25/24	04/25/24
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	5.0	1.2	04/25/24	04/25/24
1,2,4-Trichlorobenzene	ND		ug/Kg	5.0	0.6	04/25/24	04/25/24
Hexachlorobutadiene	ND		ug/Kg	5.0	0.6	04/25/24	04/25/24
Naphthalene	ND		ug/Kg	5.0	1.2	04/25/24	04/25/24
1,2,3-Trichlorobenzene	ND		ug/Kg	5.0	0.7	04/25/24	04/25/24
Xylene (total)	ND		ug/Kg	5.0		04/25/24	04/25/24
Surrogates				Limits			
Dibromofluoromethane	98%		%REC	70-130		04/25/24	04/25/24
1,2-Dichloroethane-d4	100%		%REC	70-145		04/25/24	04/25/24
Toluene-d8	100%		%REC	70-145		04/25/24	04/25/24
Bromofluorobenzene	102%		%REC	70-145		04/25/24	04/25/24

Type: Blank Lab ID: QC1147736 Batch: 338712 Matrix: Soil Method: EPA 8260B Prep Method: EPA 5035

			. тор шолош 2 тобоо						
QC1147736 Analyte	Result	Qual Units	RL	MDL	Prepared	Analyzed			
3-Chloropropene	ND	ug/Kg	250	51	04/25/24	04/25/24			
cis-1,4-Dichloro-2-butene	ND	ug/Kg	250	55	04/25/24	04/25/24			
rans-1,4-Dichloro-2-butene	ND	ug/Kg	250	21	04/25/24	04/25/24			
Freon 12	ND	ug/Kg	250	130	04/25/24	04/25/24			
Chloromethane	ND	ug/Kg	250	180	04/25/24	04/25/24			
Vinyl Chloride	ND	ug/Kg	250	81	04/25/24	04/25/24			
Bromomethane	ND	ug/Kg	250	190	04/25/24	04/25/24			
Chloroethane	ND	ug/Kg	250	130	04/25/24	04/25/24			
Trichlorofluoromethane	ND	ug/Kg	250	99	04/25/24	04/25/24			
Acetone	ND	ug/Kg	5,000	1,900	04/25/24	04/25/24			
Freon 113	ND	ug/Kg	250	69	04/25/24	04/25/24			
1,1-Dichloroethene	ND	ug/Kg	250	64	04/25/24	04/25/24			
Methylene Chloride	ND	ug/Kg	400	400	04/25/24	04/25/24			
MTBE	ND	ug/Kg	250	66	04/25/24	04/25/24			
trans-1,2-Dichloroethene	ND	ug/Kg	250	49	04/25/24	04/25/24			
1,1-Dichloroethane	ND	ug/Kg	250	52	04/25/24	04/25/24			
2-Butanone	ND	ug/Kg	5,000	280	04/25/24	04/25/24			
cis-1,2-Dichloroethene	ND	ug/Kg	250	59	04/25/24	04/25/24			
2,2-Dichloropropane	ND	ug/Kg	250	45	04/25/24	04/25/24			
Chloroform	ND	ug/Kg	250	78	04/25/24	04/25/24			
Bromochloromethane	ND	ug/Kg	250	68	04/25/24	04/25/24			
1,1,1-Trichloroethane	ND	ug/Kg	250	57	04/25/24	04/25/24			
1,1-Dichloropropene	ND	ug/Kg	250	68	04/25/24	04/25/24			
Carbon Tetrachloride	ND	ug/Kg	250	56	04/25/24	04/25/24			
1,2-Dichloroethane	ND	ug/Kg	250	98	04/25/24	04/25/24			
Benzene	ND	ug/Kg	250	33	04/25/24	04/25/24			
Trichloroethene	ND	ug/Kg	250	38	04/25/24	04/25/24			
1,2-Dichloropropane	ND	ug/Kg	250	31	04/25/24	04/25/24			
Bromodichloromethane	ND	ug/Kg	250	40	04/25/24	04/25/24			
Dibromomethane	ND	ug/Kg	250	55	04/25/24	04/25/24			
4-Methyl-2-Pentanone	ND	ug/Kg	250	85	04/25/24	04/25/24			
cis-1,3-Dichloropropene	ND	ug/Kg	250	44	04/25/24	04/25/24			
Toluene	ND	ug/Kg	250	51	04/25/24	04/25/24			
rans-1,3-Dichloropropene	ND	ug/Kg	250	57	04/25/24	04/25/24			
1,1,2-Trichloroethane	ND	ug/Kg	250	33	04/25/24	04/25/24			
1,3-Dichloropropane	ND	ug/Kg	250	43	04/25/24	04/25/24			
Tetrachloroethene	ND	ug/Kg	250	37	04/25/24	04/25/24			
Dibromochloromethane	ND	ug/Kg	250	41	04/25/24	04/25/24			
1,2-Dibromoethane	ND	ug/Kg	250	31	04/25/24	04/25/24			
Chlorobenzene	ND	ug/Kg	250	46	04/25/24	04/25/24			
1,1,1,2-Tetrachloroethane	ND ND	ug/Kg	250	57	04/25/24	04/25/24			
Ethylbenzene	ND ND	ug/Kg	250	54	04/25/24	04/25/24			
m,p-Xylenes	ND ND	ug/Kg	500	120	04/25/24	04/25/24			
o-Xylene	ND ND	ug/Kg	250	52	04/25/24	04/25/24			
Styrene	ND ND	ug/Kg	250	47	04/25/24	04/25/24			
JUNIONE	טאו	ug/rvg	250	47	UT/ 23/24	04/23/24			
Bromoform	ND	ug/Kg	250	43	04/25/24	04/25/24			

QC1147736 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
1,1,2,2-Tetrachloroethane	ND		ug/Kg	250	54	04/25/24	04/25/24
1,2,3-Trichloropropane	ND		ug/Kg	250	72	04/25/24	04/25/24
Propylbenzene	ND		ug/Kg	250	40	04/25/24	04/25/24
Bromobenzene	ND		ug/Kg	250	45	04/25/24	04/25/24
1,3,5-Trimethylbenzene	ND		ug/Kg	250	36	04/25/24	04/25/24
2-Chlorotoluene	ND		ug/Kg	250	52	04/25/24	04/25/24
4-Chlorotoluene	ND		ug/Kg	250	41	04/25/24	04/25/24
tert-Butylbenzene	ND		ug/Kg	250	33	04/25/24	04/25/24
1,2,4-Trimethylbenzene	ND		ug/Kg	250	47	04/25/24	04/25/24
sec-Butylbenzene	ND		ug/Kg	250	37	04/25/24	04/25/24
para-Isopropyl Toluene	ND		ug/Kg	250	37	04/25/24	04/25/24
1,3-Dichlorobenzene	ND		ug/Kg	250	38	04/25/24	04/25/24
1,4-Dichlorobenzene	ND		ug/Kg	250	42	04/25/24	04/25/24
n-Butylbenzene	ND		ug/Kg	250	58	04/25/24	04/25/24
1,2-Dichlorobenzene	ND		ug/Kg	250	44	04/25/24	04/25/24
1,2-Dibromo-3-Chloropropane	ND		ug/Kg	250	77	04/25/24	04/25/24
1,2,4-Trichlorobenzene	ND		ug/Kg	250	67	04/25/24	04/25/24
Hexachlorobutadiene	ND		ug/Kg	250	56	04/25/24	04/25/24
Naphthalene	ND		ug/Kg	250	73	04/25/24	04/25/24
1,2,3-Trichlorobenzene	ND		ug/Kg	250	58	04/25/24	04/25/24
Xylene (total)	ND		ug/Kg	250		04/25/24	04/25/24
Surrogates				Limits			
Dibromofluoromethane	100%		%REC	70-130		04/25/24	04/25/24
1,2-Dichloroethane-d4	98%		%REC	70-145		04/25/24	04/25/24
Toluene-d8	99%		%REC	70-145		04/25/24	04/25/24
Bromofluorobenzene	101%		%REC	70-145		04/25/24	04/25/24

Type: Matrix Spike Lab ID: QC1147803 Batch: 338712

Matrix (Source ID): Soil (506833-001) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample						
QC1147803 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1,1-Dichloroethene	40.39	ND	50.00	ug/Kg	81%		70-141	1
MTBE	38.77	ND	50.00	ug/Kg	78%		59-130	1
Benzene	37.32	ND	50.00	ug/Kg	75%		70-130	1
Trichloroethene	34.65	ND	50.00	ug/Kg	69%		69-130	1
Toluene	35.83	ND	50.00	ug/Kg	72%		70-130	1
Chlorobenzene	37.56	ND	50.00	ug/Kg	75%		70-130	1
Surrogates								
Dibromofluoromethane	51.20		50.00	ug/Kg	102%		70-145	1
1,2-Dichloroethane-d4	51.25		50.00	ug/Kg	103%		70-145	1
Toluene-d8	48.81		50.00	ug/Kg	98%		70-145	1
Bromofluorobenzene	50.90		50.00	ug/Kg	102%		70-145	1

Type: Matrix Spike Duplicate Lab ID: QC1147804 Batch: 338712

Matrix (Source ID): Soil (506833-001) Method: EPA 8260B Prep Method: EPA 5030B

		Source Sample							RPD	
QC1147804 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	RPD	Lim	DF
1,1-Dichloroethene	44.75	ND	50.00	ug/Kg	90%		70-141	10	43	1
MTBE	40.65	ND	50.00	ug/Kg	81%		59-130	5	30	1
Benzene	40.73	ND	50.00	ug/Kg	81%		70-130	9	30	1
Trichloroethene	37.68	ND	50.00	ug/Kg	75%		69-130	8	30	1
Toluene	38.62	ND	50.00	ug/Kg	77%		70-130	7	30	1
Chlorobenzene	39.97	ND	50.00	ug/Kg	80%		70-130	6	30	1
Surrogates										
Dibromofluoromethane	51.06		50.00	ug/Kg	102%		70-145			1
1,2-Dichloroethane-d4	49.94		50.00	ug/Kg	100%		70-145			1
Toluene-d8	49.44		50.00	ug/Kg	99%		70-145			1
Bromofluorobenzene	50.83		50.00	ug/Kg	102%		70-145			1

Type: Blank Lab ID: QC1146494 Batch: 338344

Matrix: Soil Method: EPA 8270C-SIM Prep Method: EPA 3546

QC1146494 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
1-Methylnaphthalene	ND		ug/Kg	9.9	1.5	04/21/24	04/24/24
2-Methylnaphthalene	ND		ug/Kg	9.9	1.5	04/21/24	04/24/24
Naphthalene	ND		ug/Kg	9.9	3.6	04/21/24	04/24/24
Acenaphthylene	ND		ug/Kg	9.9	1.6	04/21/24	04/24/24
Acenaphthene	ND		ug/Kg	9.9	1.0	04/21/24	04/24/24
Fluorene	ND		ug/Kg	9.9	1.2	04/21/24	04/24/24
Phenanthrene	ND		ug/Kg	9.9	2.2	04/21/24	04/24/24
Anthracene	ND		ug/Kg	9.9	1.4	04/21/24	04/24/24
Fluoranthene	ND		ug/Kg	9.9	3.3	04/21/24	04/24/24
Pyrene	ND		ug/Kg	9.9	3.6	04/21/24	04/24/24
Benzo(a)anthracene	ND		ug/Kg	9.9	1.1	04/21/24	04/24/24
Chrysene	ND		ug/Kg	9.9	0.95	04/21/24	04/24/24
Benzo(b)fluoranthene	ND		ug/Kg	9.9	0.92	04/21/24	04/24/24
Benzo(k)fluoranthene	ND		ug/Kg	9.9	1.0	04/21/24	04/24/24
Benzo(a)pyrene	ND		ug/Kg	9.9	1.3	04/21/24	04/24/24
Indeno(1,2,3-cd)pyrene	ND		ug/Kg	9.9	1.5	04/21/24	04/24/24
Dibenz(a,h)anthracene	ND		ug/Kg	9.9	2.8	04/21/24	04/24/24
Benzo(g,h,i)perylene	ND		ug/Kg	9.9	1.6	04/21/24	04/24/24
Surrogates				Limits			
Nitrobenzene-d5	86%		%REC	27-125		04/21/24	04/24/24
2-Fluorobiphenyl	86%		%REC	30-120		04/21/24	04/24/24
Terphenyl-d14	82%		%REC	33-155		04/21/24	04/24/24

Type: Lab Control Sample Lab ID: QC1146495 Batch: 338344

Matrix: Soil Method: EPA 8270C-SIM Prep Method: EPA 3546

				•		
QC1146495 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
1-Methylnaphthalene	166.0	201.0	ug/Kg	83%		28-130
2-Methylnaphthalene	168.0	201.0	ug/Kg	84%		33-130
Naphthalene	182.8	201.0	ug/Kg	91%		25-130
Acenaphthylene	159.2	201.0	ug/Kg	79%		28-130
Acenaphthene	167.7	201.0	ug/Kg	83%		32-130
Fluorene	174.1	201.0	ug/Kg	87%		35-130
Phenanthrene	178.8	201.0	ug/Kg	89%		35-132
Anthracene	178.5	201.0	ug/Kg	89%		34-136
Fluoranthene	176.8	201.0	ug/Kg	88%		34-139
Pyrene	175.0	201.0	ug/Kg	87%		35-134
Benzo(a)anthracene	183.0	201.0	ug/Kg	91%		30-132
Chrysene	182.7	201.0	ug/Kg	91%		29-130
Benzo(b)fluoranthene	188.6	201.0	ug/Kg	94%		32-137
Benzo(k)fluoranthene	198.7	201.0	ug/Kg	99%		32-130
Benzo(a)pyrene	164.6	201.0	ug/Kg	82%		10-138
Indeno(1,2,3-cd)pyrene	224.9	201.0	ug/Kg	112%	b	34-132
Dibenz(a,h)anthracene	201.0	201.0	ug/Kg	100%		32-130
Benzo(g,h,i)perylene	217.6	201.0	ug/Kg	108%	b	27-130
Surrogates						
Nitrobenzene-d5	184.1	201.0	ug/Kg	92%		27-125
2-Fluorobiphenyl	171.1	201.0	ug/Kg	85%		30-120
Terphenyl-d14	163.5	201.0	ug/Kg	81%		33-155

Type: Matrix Spike Lab ID: QC1146496 Batch: 338344

Matrix (Source ID): Soil (506595-008) Method: EPA 8270C-SIM Prep Method: EPA 3546

Basis: Dry

		Source Sample						
QC1146496 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
1-Methylnaphthalene	180.9	ND	220.9	ug/Kg	82%		25-130	2
2-Methylnaphthalene	184.3	10.27	220.9	ug/Kg	79%		32-133	2
Naphthalene	189.0	ND	220.9	ug/Kg	86%		33-130	2
Acenaphthylene	176.3	ND	220.9	ug/Kg	80%		14-157	2
Acenaphthene	175.3	ND	220.9	ug/Kg	79%		28-134	2
Fluorene	181.8	ND	220.9	ug/Kg	82%		27-140	2
Phenanthrene	217.9	63.85	220.9	ug/Kg	70%		29-147	2
Anthracene	187.5	9.673	220.9	ug/Kg	81%		24-156	2
Fluoranthene	206.3	35.31	220.9	ug/Kg	77%		28-160	2
Pyrene	218.5	53.90	220.9	ug/Kg	75%		26-153	2
Benzo(a)anthracene	205.4	35.74	220.9	ug/Kg	77%		26-174	2
Chrysene	224.7	76.83	220.9	ug/Kg	67%		40-139	2
Benzo(b)fluoranthene	205.9	36.46	220.9	ug/Kg	77%		36-164	2
Benzo(k)fluoranthene	209.9	11.13	220.9	ug/Kg	90%		36-161	2
Benzo(a)pyrene	190.5	28.48	220.9	ug/Kg	73%		18-173	2
Indeno(1,2,3-cd)pyrene	217.1	17.31	220.9	ug/Kg	90%	b	26-154	2
Dibenz(a,h)anthracene	182.8	ND	220.9	ug/Kg	83%		38-132	2
Benzo(g,h,i)perylene	212.9	23.84	220.9	ug/Kg	86%	b	36-130	2
Surrogates								
Nitrobenzene-d5	185.5		220.9	ug/Kg	84%		27-125	2
2-Fluorobiphenyl	182.5		220.9	ug/Kg	83%		30-120	2
Terphenyl-d14	164.4		220.9	ug/Kg	74%		33-155	2

Type: Matrix Spike Duplicate Lab ID: QC1146497 Batch: 338344

Matrix (Source ID): Soil (506595-008) Method: EPA 8270C-SIM Prep Method: EPA 3546

Basis: Dry

QC1146497 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
1-Methylnaphthalene	184.5	ND	219.8	ug/Kg	84%		25-130	2	35	2
2-Methylnaphthalene	187.3	10.27	219.8	ug/Kg	81%		32-133	2	35	2
Naphthalene	182.1	ND	219.8	ug/Kg	83%		33-130	3	35	2
Acenaphthylene	173.6	ND	219.8	ug/Kg	79%		14-157	1	35	2
Acenaphthene	169.9	ND	219.8	ug/Kg	77%		28-134	3	35	2
Fluorene	176.3	ND	219.8	ug/Kg	80%		27-140	3	35	2
Phenanthrene	254.6	63.85	219.8	ug/Kg	87%		29-147	16	35	2
Anthracene	196.1	9.673	219.8	ug/Kg	85%		24-156	5	35	2
Fluoranthene	332.4	35.31	219.8	ug/Kg	135%		28-160	47*	35	2
Pyrene	328.3	53.90	219.8	ug/Kg	125%		26-153	41*	35	2
Benzo(a)anthracene	293.1	35.74	219.8	ug/Kg	117%		26-174	36*	35	2
Chrysene	311.4	76.83	219.8	ug/Kg	107%		40-139	33	35	2
Benzo(b)fluoranthene	322.4	36.46	219.8	ug/Kg	130%		36-164	44*	35	2
Benzo(k)fluoranthene	259.8	11.13	219.8	ug/Kg	113%		36-161	22	35	2
Benzo(a)pyrene	283.6	28.48	219.8	ug/Kg	116%		18-173	40*	35	2
Indeno(1,2,3-cd)pyrene	268.5	17.31	219.8	ug/Kg	114%	b	26-154	22	35	2
Dibenz(a,h)anthracene	182.8	ND	219.8	ug/Kg	83%		38-132	0	35	2
Benzo(g,h,i)perylene	260.0	23.84	219.8	ug/Kg	107%	b	36-130	20	35	2
Surrogates										
Nitrobenzene-d5	184.5		219.8	ug/Kg	84%		27-125			2
2-Fluorobiphenyl	176.3		219.8	ug/Kg	80%		30-120			2
Terphenyl-d14	162.4		219.8	ug/Kg	74%		33-155			2

[#] CCV drift outside limits; average CCV drift within limits per method

requirements

Value is outside QC limits

J Estimated value

ND Not Detected

b See narrative

Laboratory Job Number 506595

Subcontracted Products

SGS Forensic

Bulk Asbestos Material Analysis

(Air Resources Board Method 435, June 6, 1991)

Enthalpy Analytical LLC **Client ID:** 1137 Miguel Gamboa N016124 **Report Number:** 2323 5th Street 04/19/24 **Date Received:** 04/26/24 **Date Analyzed:** Berkeley, CA 94710 **Date Printed:** 04/26/24 **SGSFL Job ID: Job ID/Site:** PO-064054 - Enthalpy EO# 506595 1137 **Total Samples Submitted:** 6 **Total Samples Analyzed:** PLM Report Number: N/A

Sample Preparation and Analysis:

Samples were analyzed by the Air Resources Board's Method 435, Determination of Asbestos Content of Serpentine Aggregate. Samples were ground to 200 particle size in the laboratory. Approximately 1 pint was retained for analysis. Samples were prepared for observation according to the guidelines of Exception I and Exception II as defined by the 435 Method. Samples which contained less than 10% asbestos were prepared for observation according to the point count technique as defined by the 435 Method. This analysis was performed with a standard cross-hair reticle.

Sample ID	Lab Number	Layer Description
MS1-4	12742884	Brown Soil
Visual Estimation Results:		
Matrix percentage of entire sampl	e 100	
Visual estimation percentage: Asbestos type(s) detected:	None Detected None Detected	
Comment: This result meets the	requirements of E	xception I as defined by the 435 Method.
MS32	12742885	Brown Soil
Visual Estimation Results:		
Matrix percentage of entire sampl	e 100	
Visual estimation percentage: Asbestos type(s) detected:	None Detected None Detected	

RA 3-1 12742886 **Tan Soil**

Visual Estimation Results:

Matrix percentage of entire sample 100 **Visual estimation percentage:** None Detected

Asbestos type(s) detected: None Detected

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

PC 2-1.5 12742887 Tan Soil

Visual Estimation Results:

Matrix percentage of entire sample 100 **Visual estimation percentage:** None Detected

Asbestos type(s) detected: None Detected

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

Bulk Asbestos Material Analysis

(Air Resources Board Method 435, June 6, 1991)

Enthalpy Analytical LLC **Client ID:** 1137 Miguel Gamboa N016124 **Report Number:** 2323 5th Street 04/19/24 **Date Received: Date Analyzed:** 04/26/24 Berkeley, CA 94710 **Date Printed:** 04/26/24 **Job ID/Site:** PO-064054 - Enthalpy EO# 506595 **SGSFL Job ID:** 1137 **Total Samples Submitted:** PLM Report Number: N/A **Total Samples Analyzed:**

Sample Preparation and Analysis:

Samples were analyzed by the Air Resources Board's Method 435, Determination of Asbestos Content of Serpentine Aggregate. Samples were ground to 200 particle size in the laboratory. Approximately 1 pint was retained for analysis. Samples were prepared for observation according to the guidelines of Exception I and Exception II as defined by the 435 Method. Samples which contained less than 10% asbestos were prepared for observation according to the point count technique as defined by the 435 Method. This analysis was performed with a standard cross-hair reticle.

Sample ID	Lab Number	Layer Description
PC-3-2	12742888	Brown Soil
Visual Estimation Results:		
Matrix percentage of entire sample 100		
Visual estimation percentage: Asbestos type(s) detected:	None Detected None Detected	
Comment: This result meets the requirements of Exception I as defined by the 435 Method.		
PC 4 -0.5	12742889	Tan Soil

Visual Estimation Results:

Matrix percentage of entire sample 100 Visual estimation percentage: None Detected Asbestos type(s) detected: None Detected

Comment: This result meets the requirements of Exception I as defined by the 435 Method.

Maria E. Casper

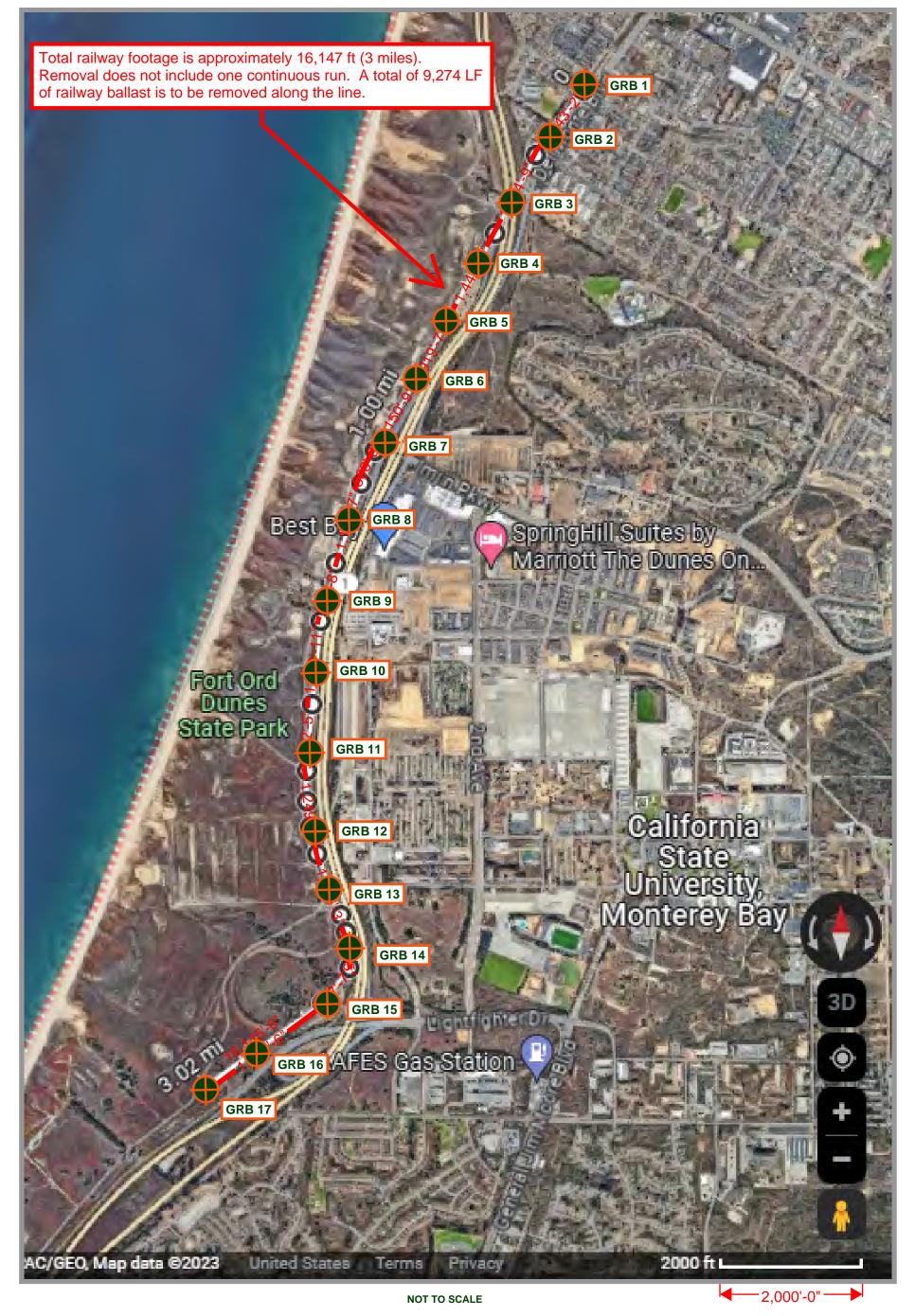

Maria Cosper, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification (LOQ) = 0.25%. Trace denotes the presence of asbestos below the LOQ. ND = None Detected. Analytical results and reports are generated by SGS Forensic Laboratories (SGSFL) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by SGSFL to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by SGSFL. The client is solely responsible for the use and interpretation of test results and reports requested from SGSFL. This report must not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. Government. SGSFL is not able to assess the degree of hazard resulting from materials analyzed. SGS Forensic Laboratories reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted.

Notice of Exemption

Appendix E

To:	Office of Planning and Research P.O. Box 3044, Room 113	From: (Public Agency): Monterey-Salinas Transit District 19 Upper Ragsdale Dr., Ste. 200		
	Sacramento, CA 95812-3044	Monterey, CA 93940	EILED	
	County Clerk		FILED	
	County of: Monterey 168 West Alisal Street, 1st Floor	(Address)		
	Salinas, CA 93901		MAR 13 2023	
			XOCHITL MARINA CAMACHO	
Proje	ect Title: SURF! Busway and Bus Rapid	d Transit Project	MONTEREY COUNTY CLERK DEPUTY	
Proje	ect Applicant: Monterey-Salinas Transit	District	2000-003P	
Proje	ect Location - Specific:			
Mo	nterey Branch Line rail corridor &	streets from Marina to Sand City,	Monterey Count	
•	on Location Only.	i roject Location - County.	erey	
	cription of Nature, Purpose and Beneficiarie	•		
trans	Rapid Transit/Bus Service Project along six linear milit stations, roundabouts, pedestrian/bike facilities, wa	yfinding, transit prioritization, charging stations, and	supporting	
infras	structure, designed to serve the general population of includes actions from the Transportation Agency for N	Monterey County, reduce congestion and improve r	mobility. The Project	
	e of Public Agency Approving Project: Mor			
Nam	e of Person or Agency Carrying Out Projec	t: Monterey-Salinas Transit District		
Exer	npt Status: (check one):			
[☐ Ministerial (Sec. 21080(b)(1); 15268);			
į	☐ Declared Emergency (Sec. 21080(b)(3)			
	☐ Emergency Project (Sec. 21080(b)(4);			
_	Categorical Exemption. State type and			
L	Statutory Exemptions. State code numl	ber: Pub. Res. Code Section 21080.25(b) [SB 9	22 (2022)]	
Reas	ons why project is exempt:			
	Project is a Bus Rapid Transit an			
	ch utilize a rail corridor and public			
loca	ated in an urbanized area, and will	use a skilled and trained workfore	ce.	
Lead	Agency			
Cont	act Person: Michelle Overmeyer	Area Code/Telephone/Extension:	831-264-5877	
If file	ed by applicant:			
1	 Attach certified document of exemption fi 			
2	2. Has a Notice of Exemption been filed by	the public agency approving the project?	• Yes No	
Signa	ature: Care A Oella	Date: 3-13-2023 Title: Carl G.	Sedoryk	
	Signed by Lead Agency Signed	by Applicant		
Authorit Referer	ty cited: Sections 21083 and 21110, Public Resourd nce: Sections 21108, 21152, and 21152.1, Public R	ces Code. Date Received for filing at O esources Code.	PR:	



Source: Kimley Horn, 2020

Figure 3-2: General Project Location MST SURF! Busway and Bus Rapid Transit Project

Samples to be Tested for:

- CAM 17 Metals VOCs SVOCs OCPs PCBs
- TPH Diesel, Motor Oil, Gas Silica Gel Cleanup CARB 435A Asbestos (on 9 samples)
- * Data to be reported in Dry Weight

roject Name & Location

Date: 12/04/23

Initial Study/Mitigated Negative Declaration

MST SURF! Busway and Bus Rapid Transit Project

Monterey County, California

Prepared by:

Kimley» Horn

10 Almaden Boulevard, Suite 1250 San Jose, California 95113

June 2021

MST SURF! Busway and Bus Rapid Transit Project

Environmental Initial Study

and

Mitigated Negative Declaration

Prepared for:

Monterey-Salinas Transit District

and

Transportation Agency for Monterey County

June 2021

Prepared by:

Kimley » Horn

This page intentionally left blank.

Table of Contents

1.0	Introduction & Purpose	1
1.1	Purpose and Scope of the Initial Study	1
2.0	Description of Proposed Project	2
2.1	Project Background, Location, and Setting	2
L	Location	2
F	Project Background and Prior Studies	2
F	Physical Site Conditions and Setting	3
L	Land Use, Zoning, and Jurisdictional Boundaries	3
F	Project Characteristics	3
(Operational Information	3
F	Project Phasing, Construction, and Staging	4
2.2	Required Entitlements, Permits and Easements	4
3.0	Initial Study Checklist	θ
3.1	Project Information	6
4.0	Environmental Analysis	8
4.1	Aesthetics	8
4.2	Agriculture and Forestry Resources	10
4.3	Air Quality	12
4.4	Biological Resources	15
4.5	Cultural Resources	25
4.6	5 Energy	28
4.7	Geology and Soils	30
4.8	Greenhouse Gas Emissions	34
4.9	Hazards and Hazardous Materials	36
4.1	.0 Hydrology and Water Quality	40
4.1	1 Land Use and Planning	43
4.1	2 Mineral Resources	44
4.1	3 Noise	45
4.1	4 Population and Housing	47
4.1	5 Public Services	48
4.1	6 Recreation	50
4.1	.7 Transportation	51

4.18	3 Tribal Cultural Resources	53
4.19	Utilities and Service Systems	55
4.20) Wildfire	57
4.21	Mandatory Findings of Significance	59
5.0	Report Preparers	61
6.0	References	62

List of Figures

Note: All figures are attached within respective Appendices.

Figure 1: Regional Location

Figure 2: General Project Location

Figure 3A and 3B: Land Use and Coastal Zone Boundaries

Appendices to the Initial Study

Appendix 1: Final Mitigated Negative Declaration

Appendix 2: Traffic Impact Assessment

Appendix 3: Detailed Project Description

Appendix 4: Aerial Plots and Project Design Details

Appendix 5: Aesthetics and Visual Resources

Appendix 6: Air Quality Assessment

Appendix 7: Final Biological Resources Report

Appendix 8: Cultural Resources Assessment

Appendix 9: Consistency with Land Use Policy

Appendix 10: Geology and Soils

Appendix 11: Greenhouse Gas Emissions Analysis

Appendix 12: Hazards and Hazardous Materials

Appendix 13: Hydrology and Water Quality

Appendix 14: Noise Analysis

Technical Attachments

Attachment 6A: Air Quality and Greenhouse Gas CalEEMod Model Outputs

Attachment 8A: CHRIS Results

Attachment 14A: Acoustical Data Outputs

TAMC, September 2011. Monterey Peninsula Light Rail Project Administrative Draft Environmental Assessment/Environmental Impact Report (SCH # 2009111044) including appendices incorporated by reference.

June 2021 Page iii

1.0 INTRODUCTION & PURPOSE

1.1 Purpose and Scope of the Initial Study

This Initial Study has been prepared specifically to support MST's findings, as the Lead Agency under the California Environmental Quality Act (CEQA), that the project under review would not result in significant environmental impacts with the application of existing regulations, design features and permit conditions. This study (and its supporting Appendices) has been prepared pursuant to CEQA (Pub. Resources Code, Section 21000, et seq.). The Initial Study is supported by a combination of new and prior studies, including the Administrative Draft Environmental Assessment/Environmental Impact Report (TAMC, 2011). This document and its supporting appendices are incorporated herein by reference.

CEQA requires a lead agency, as defined, to prepare, or cause to be prepared, and certify the completion of an environmental impact report on a project that it proposes to carry out or approve that may have a significant effect on the environment or to adopt a negative declaration if it finds that the project will not have that effect. CEQA also requires a lead agency to prepare a mitigated negative declaration for a project that may have a significant effect on the environment if revisions in the project would avoid or mitigate that effect and there is no substantial evidence that the project, as revised, would have a significant effect on the environment. This Initial Study and supporting documentation has concluded that all potential adverse environmental effects can be mitigated to a less than significant level.

The conclusions herein are based on CEQA standards, professional judgement, field review, project-specific technical studies and available public documents. This Initial Study and its Appendices constitutes substantial evidence supporting the conclusion that preparation of an EIR is not required prior to approval of the project and that the environmental effects of the project have been fully considered.

2.0 DESCRIPTION OF PROPOSED PROJECT

2.1 Project Background, Location, and Setting

Location

The MST SURF! Busway and Bus Rapid Transit Project (project) would be located between MST's Marina Transit Exchange at Reservation Road and De Forest Road (northern terminus), and Contra Costa Street and Orange Avenue in Sand City (ultimate southern terminus). The project consists of approximately 6 linear miles of roadway surface and related improvements to provide dedicated express busway service between these points.

The majority of the alignment of the busway would be within the Transportation Agency for Monterey County (TAMC) Monterey Branch Line rail corridor right-of-way (ROW), an approximately 100-foot wide corridor generally located between Beach Range Road and the Monterey Peninsula Recreation Trail on the ocean side of Highway 1. Given the length of the proposed busway and its physical location, the project would be located in and/or adjacent to the cities of Marina, Seaside, and Sand City, extending parallel to Highway 1 and Fort Ord Dunes State Park.

The project's regional location is shown in **Figure 1**. The entirety of the project alignment is shown in **Figure 2**. More detailed location details are provided in **Appendix 3**.

Project Background and Prior Studies

The Monterey Branch Line was constructed by Southern Pacific Railroad Company (SPRR) in 1879, and extended 19.6 miles from Castroville to Lake Majella in Pacific Grove. Rail service on this standard-gauge line began in 1880, following eight years of narrow-gauge service operated by the Monterey and Salinas Valley Railroad Company. SPRR operated both freight and passenger rail service on the Del Monte Express between the Monterey Peninsula and San Francisco from 1881 to 1971. Over time, traffic on the line diminished and it fell into disrepair, and the remaining freight service on the branch line was discontinued south of Seaside in 1978.

In 1982, using State Senate Bill 620 funds the cities of Seaside and Monterey purchased the SPRR ROW between Contra Costa Street in Seaside and downtown Monterey. A highly popular pedestrian/bicycle multi-purpose trail (Monterey Bay Coastal Recreation Trail) has been constructed within this section of the ROW extending south from Canyon del Rey Boulevard along the coast into Pacific Grove. North of Contra Costa Street, SPRR continued operation of freight rail service through the 1990s. TAMC purchased this portion of the line from the Union Pacific Railroad in September 2003.

In response to continuing and increasing congestion on Highway 1, MST, in partnership with TAMC, the Association of Monterey Bay Area Governments (AMBAG), Caltrans, Santa Cruz METRO, California Highway Patrol and the Santa Cruz County Regional Transportation Commission (SCCRTC) conducted a study to explore the potential for improving bus operations in the Highway 1 corridor, including a bus-on-shoulder concept. The *Final Project Report Monterey Bay Area Feasibility Study of Bus on Shoulder Operations on State Route 1 and the Monterey Branch Line* ("Bus Study") considered eight alternatives on or parallel to State Route 1, including the possibility of using the Monterey Branch Line rail corridor for bus rapid transit operations. The final study ultimately concluded that operating MST buses along the

Monterey Branch Line would be the most cost-effective solution to improving on-time performance in this critical corridor. This feasibility study was completed in 2018, and the "bus within branch line" concept analyzed is very similar to the project evaluated in this document. See **Appendix 3** for more details on project background and prior studies.

Physical Site Conditions and Setting

The Monterey Branch Line corridor currently contains idle rail lines from the former Southern Pacific Railroad, including the railroad bed surface and aging facilities and utilities. Additional infrastructure associated with the former Fort Ord military base are located along the corridor, including concrete platforms, rail spurs, and access tunnels and bridges. The corridor is heavily disturbed by the rail lines, limited maintenance and regular practice of weed control; however, it is also wide enough to support native and non-native plant communities.

Land Use, Zoning, and Jurisdictional Boundaries

While the rail corridor is owned by TAMC, the underlying land uses are within the boundaries of the City of Marina, City of Sand City, and Monterey County. The rail right-of-way is immediately adjacent to, but outside of, the City of Seaside.

The project area consists of the following parcels:

- Portions of V69-1 (former Southern Pacific Railroad Monterey Branch Line owned by TAMC)
- 031-221-005 (MST 5th Street Station Parcel)
- 031-221-001 (5th Street underpass/busway extension road)

Additionally, the project extends along public roadways in the cities of Marina, Sand City and Seaside.

Project Characteristics

As mentioned above, the entirety of the project is approximately six miles in length. However, the area of potential affect, or APE, is 4.9 miles long. This is the portion of the project located within the TAMC ROW where most physical construction would occur. The APE is shown on **Figures 3A** and **3B**.

For ease of discussion and analysis, the six-mile long project is broken down into the following segments. See **Appendix 3** for details of each project segment.

- Segment 1 Marina Transit Exchange to Palm Avenue Corridor Entry and Platform
- Segment 2 Palm Avenue Corridor Entry to 5th Street Station
- Segment 3 5th Street Station to California/Fremont/Monterey/SR 1 Interchange (California Avenue Roundabout Connection)
- Segment 4 California/Fremont/Monterey/SR 1 Interchange to Playa Avenue
- Segment 5 Playa Avenue to Contra Costa Avenue (using public roadways)

Operational Information

Busway Vehicles

Under the California's Innovative Clean Transit (ICT) Rule, MST will be required to incorporate zero emission buses as part of its regular procurement schedule and transition to a 100% zero emission fleet by 2040. To meet environmental objectives of the project, MST plans to move to 100% zero emission

vehicle operation as soon as possible as procurements are made and fulfilled and as existing vehicles are replaced. The SURF! fleet is assumed to consist of 50 to 75 percent zero emission vehicles on day one of operations, moving to 100% as soon as practical as new zero emission vehicles enter the MST fleet.

Dedicated Busway Lanes, Transportation Controls and Technology

The dedicated bi-directional bus lanes will consist of two 12-foot asphalt lanes, which will be separated from existing rail lines by 9 to 12 feet (from center of rail line), except when the busway must cross the rail line to avoid constraints. With busway operations, traffic control signals at crossing locations would be activated by on-board technology on buses.

Potential Ridership, Headways and Travel Times

Buses would operate to maximize ridership in the southbound direction during the morning peak commute period (6:00 AM to 10:00 AM) and the northbound direction during the evening peak commute period (4:00 PM to 8:00 PM). It is estimated that travel time along the route would be reduced from 15.1 minutes (no busway) to 4.5 minutes (with busway), plus time for the single stop at the 5th Street Station mid-way.

Project Phasing, Construction, and Staging

MST anticipates that the major components of the project would be constructed simultaneously, with sections of busway progressing in increments based on the flow and availability of construction materials. The primary phases of construction would include:

- Site grubbing and clearing
- Palm Avenue/Del Monte Boulevard bus and roadway improvements
- California Avenue Roundabout
- Linear roadbed construction within the TAMC corridor between Palm Avenue and Playa Avenue
- 5th Street Station improvements
- Habitat restoration efforts
- Final finishes, fencing, lighting, signage and landscaping

See **Appendix 3** for a comprehensive Project Description.

2.2 Required Entitlements, Permits and Easements

The project is expected to require the following approvals:

- Approval by Federal Transit Administration (FTA) as the lead agency under NEPA prior to federal funding
- Approval by the Transportation Agency for Monterey County (TAMC) for use agreements between MST and TAMC and any additional funding commitments towards final design or construction
- Natural resource permits (e.g. take or other permits issued by United States Fish and Wildlife Services [USFWS])
- Consolidated Coastal Development Permit issued by the California Coastal Commission
- Encroachment permit issued by Caltrans (e.g. completion of a Design Engineering Evaluation Report (DEER)). For eligible projects and actions, the DEER can be used in lieu of the PSR-PDS, PSR-PR and Project Report process and provides an opportunity to streamlining Caltrans review

3.0 INITIAL STUDY CHECKLIST

3.1 Project Information

1. Project title:

MST SURF! Busway and Bus Rapid Transit Project

2. Lead agency name and address:

Monterey-Salinas Transit District, 19 Upper Ragsdale Drive, Suite 200, Monterey, CA 93940

3. Contact person and phone number:

Michelle Overmeyer, Director of Planning and Innovation, (831)264-5877

4. Project location:

The SURF! busway project would begin at MST's Marina Transit Exchange at Reservation Road and De Forest Road (northern terminus), and end at Contra Costa Street in Sand City (southern terminus). The alignment of the busway would be primarily within the Transportation Agency for Monterey County's (TAMC's) Monterey Branch Line rail corridor, generally located west of Highway 1 between Beach Range Road and the Monterey Peninsula Recreation Trail. Public roadways would be used for the SURF! line at both ends of the route. The project would be located or adjacent to the cities of Marina, Seaside, and Sand City, running parallel to Highway 1 next to Fort Ord Dunes State Park. The project area consists of the following parcels: Portions of V69-1 (former Southern Pacific Railroad Monterey Branch Line owned by TAMC), 031-221-005 (MST 5th Street Station Parcel), and 031-221-001 (5th Street underpass/busway extension road).

5. Project sponsor's name and address:

Same as above

6. General plan designation:

Various. Project alignment identified as open space and transportation corridor in local general plans and local coastal plans.

7. Zoning:

Various per local agency zoning codes.

8. Description of project: (Describe the whole action involved, including but not limited to later phases of the project, and any secondary, support, or off-site features necessary for its implementation. Attach additional sheets if necessary.)

The project consists of the following primary components:

- A bus-only entry into the TAMC right-of-way at Del Monte Boulevard and Palm Avenue in the City of Marina. This element requires upgraded intersection traffic and safety controls, as well as bicycle and pedestrian path improvements along Del Monte Boulevard and parallel to Marina Drive.
- Two lanes (one in each direction) of dedicated busway road surface within the TAMC Monterey
 Branch Line right-of-way. Work within the TAMC right-of-way to construct the bus lanes will

- require grading, drainage improvements, retaining walls, fencing, recreation trail connections, utility relocations and other necessary improvements to create a safe, dedicated busway.
- A new transit station (5th Street Station) located on MST property near 5th Street east of Highway 1. The station would include bus bays, public parking, drop off area and other amenities. Other improvements associated with the station include bicycle and pedestrian facilities to access the station from the Coastal Recreation Trail and new connections to the existing bike trail system adjacent to the station.
- A new roundabout in the public right-of-way at California Avenue and Highway 1 southbound ramp in Sand City to better accommodate buses re-entering the public right-of-way.
- A stop at Playa Avenue in Sand City where SURF! riders could connect to the existing bus network. The Del Monte Boulevard/Playa Avenue and California Avenue/Playa Avenue intersections would include signalization and synchronization to improve traffic operations at this location. The route would continue to Contra Costa Street in Sand City via existing public roadways.

See Appendix 3 to this document for details.

9. Surrounding land uses and setting: Briefly describe the project's surroundings:

The majority of the alignment of the busway would be within the TAMC Monterey Branch Line rail corridor ROW, an approximately 100-foot wide corridor generally located between Beach Range Road and the Monterey Peninsula Recreation Trail on the ocean side of Highway 1. The project would be located in and/or adjacent to the cities of Marina, Seaside, and Sand City, extending parallel to Highway 1 and Fort Ord Dunes State Park. The northern and southern ends of the busway alignment utilize public roadways within an existing urban environment.

10. Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement.)

- Approval by Federal Transit Administration (FTA) as the lead NEPA agency prior to federal funding
- Natural resource permits (e.g. take or other permits issued by United States Fish and Wildlife Services [USFWS])
- Consolidated Coastal Development Permit issued by the California Coastal Commission
- Encroachment permit issued by Caltrans (e.g. completion of a Design Engineering Evaluation Report (DEER))

11. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

Outreach for consultation was conducted by the Lead Agency. No formal consultation was requested following outreach efforts.

NOTE: Conducting consultation early in the CEQA process allows tribal governments, lead agencies, and project proponents to discuss the level of environmental review, identify and address potential adverse impacts to tribal cultural resources, and reduce the potential for delay and conflict in the environmental review process. (See Public Resources Code section 21080.3.2.) Information may also be available from the California Native American Heritage Commission's Sacred Lands File per Public Resources Code section 5097.96 and the California Historical Resources Information System administered by the California Office of Historic Preservation. Please also note that Public Resources Code section 21082.3(c) contains provisions specific to confidentiality.

4.0 ENVIRONMENTAL ANALYSIS

4.1 Aesthetics

ENVIRONMENTAL IMPACTS Issues		Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Exc	cept as provided in Public Resources Code Section 2	1099, would the	project:		
a)	Have a substantial adverse effect on a scenic vista?			х	
a)	Substantially damage scenic resources, including but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway?				х
b)	Substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?			Х	
c)	Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?		Х		

a) Have a substantial adverse effect on a scenic vista?

Less than significant impact. There are several viewpoints near the busway corridor that could be considered scenic vistas based on the elevated nature of the views and/or visibility of a sweeping landscape. However, these vistas are not significantly affected or compromised by the project. See **Appendix 5** for detailed discussion.

b) Substantially damage scenic resources, including but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway?

No impact. The project site is not located within the viewshed of a state-designated scenic highway, and therefore would not impact or substantially alter scenic resources related to a scenic highway. While many segments of Highway 1 are officially designated as a scenic highway, the segment parallel to the busway is not.

c) Substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?

Less than significant impact. The visual quality of the alignment and lands on either side of the alignment is dominated by Highway 1, the existing railroad tracks and railbed, the coastal dune topography and the Monterey Bay beyond. Visual simulations of the pre-and post-project conditions from selected key viewpoints (KVPs) of the alignment are shown in **Appendix 5**. Based on the existing visual character of the public views and viewing experience from the selected KVPs, implementation of the project would not substantially degrade the existing visual character of the site or its surroundings. Visual effects from construction would occur but are considered a temporary visual nuisance rather than a permanent adverse effect. See **Appendix 5** for detailed analysis of construction and operational effects.

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Potentially significant unless mitigation incorporated. The project would not result in unusual or permanent light sources that would significantly affect day or nighttime views in the area during construction activities. All lighting required for construction would be temporary, and no nighttime construction is proposed.

Regarding bus headlights, buses would have direct lighting from headlights and interior cabin lighting travelling along the busway lanes that would introduce a new source of light during nighttime hours. However, these sources of light would be infrequent 10-minute headways and would not be considered a significant new source of lighting in the area compared to existing conditions and adjacent highway.

For safety purposes, limited overhead lighting would be required at key locations where the busway intersects with the bicycle/pedestrian trail network. The following mitigation measure will ensure that new sources of lighting at these locations would be controlled to minimize potential effects on the nighttime environment, coastal zone, and biological resources of the adjacent coastal dune habitat.

Mitigation Measure/Project Condition

MM AES-3.1 Limit New Sources of Lighting

The final construction drawing package shall include a final Lighting Plan indicating the type and location of proposed lighting sources. Construction lighting shall be directed away from sensitive habitat areas if required during evening hours. The Lighting Plan shall include specific products and photometric data demonstrating how new lighting sources necessary for project operational safety shall be shielded or baffled to minimize unwanted light spill and direct light away from the State Park. As the alignment is located within airport Safety Zone 7 of both the Marina Municipal and Monterey Regional airports, the project's Lighting Plan shall also be submitted to the respective airport manager for of each airport for review and approval consistent with ALUC standard conditions.

4.2 Agriculture and Forestry Resources

	VIRONMENTAL IMPACTS Jes	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact		
ma Cal	In determining whether impacts to agricultural resources are significant environmental effects, lead age may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by California Department of Conservation as an optional model to use in assessing impacts on agriculture a farmland. Would the project:						
a)	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				Х		
b)	Conflict with existing zoning for agricultural use, or a Williamson Act contract?				Х		
c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?				Х		
d)	Result in the loss of forest land or conversion of forest land to non-forest use?				Х		
e)	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?				Х		

- a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?
- b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

- c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?
- d) Result in the loss of forest land or conversion of forest land to non-forest use?
- e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

No impact. No portion of the project alignment is designated as Prime Farmland, Unique Farmland, or Farmland of Statewide Importance by the State Farmland Mapping and Monitoring Program (FMMP). No Williamson Act contract applies to the project alignment. The project site does not currently support agricultural or forestry uses, and it is designated for transportation and public uses. There would be no impact to agricultural and forestry resources.

4.3 Air Quality

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
	nere available, the significance criteria established llution control district may be relied upon to make			_	
a)	Conflict with or obstruct implementation of the applicable air quality plan?			Х	
b)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?		х		
c)	Expose sensitive receptors to substantial pollutant concentrations?			х	
d)	Result in other emissions (such as those leading to odors adversely affecting a substantial number of people?			Х	

a) Conflict with or obstruct implementation of the applicable air quality plan?

Less than significant impact. The MBARD's 2008 CEQA Air Quality Guidelines provides criteria for determining cumulative impacts and consistency. The CEQA Air Quality Guidelines note that a project which is inconsistent with an Air Quality Plan would have a significant cumulative impact on regional air quality. The project is consistent with the Air Quality Management Plan for the Monterey Bay Region. The project does not include any changes to land use or zoning designations. The proposed project would result in the construction and operation of a new busway project with zero emission vehicles and does not include new land uses or structures. In addition, the proposed project's construction and operation emissions would not exceed MBARD thresholds. See **Appendix 6** for detailed discussion.

b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

Potentially significant unless mitigation incorporated. As discussed above, the proposed project's construction and operation emissions would not exceed MBARD thresholds. MBARD CEQA Guidelines state that construction activities (e.g. excavation, grading, on-site vehicles), which emit 82 pounds per day or more of PM₁₀, would have a significant impact on local air quality when they are located nearby and upwind of sensitive receptors. As discussed in further detail in **Appendix 6**, construction emissions

associated with the project would not exceed this threshold for PM_{10} . Given the proximity of sensitive receptors to the project site, the project would be required to comply with the standard conditions below, which would further ensure impacts would be reduced to a less-than-significant level for all construction activities on the project site. See **Appendix 6** for additional details.

Standard Conditions and Requirements

SC AQ-2.1 Reduce Fugitive Dust

The project applicant shall implement the following measures to minimize nuisance impacts and to significantly reduce fugitive dust emissions, and the project applicant shall require all of the following measures to be shown on grading and building plans:

- Limit grading to 8.1 acres per day, and grading and excavation to 2.2 acres per day.
- Water graded/excavated areas and active unpaved roadways, unpaved staging areas, and unpaved parking areas at least twice daily. Frequency should be based on the type of operations, soil and wind exposure.
- Prohibit all grading activities during periods of high wind (more than 15 mph).
- Stabilize all disturbed soil areas as necessary using jute netting, gravel for temporary roads or other methods approved in advance by the APCD.
- Sow exposed ground areas that are planned to be reworked at dates greater than one month after initial grading with a fast germinating, non-invasive grass seed, and water until vegetation is established.
- Plant vegetative ground cover in disturbed areas as soon as possible with non-invasive species.
- Use street sweepers, water trucks, or sprinkler systems in sufficient quantities to prevent airborne dust from leaving the site. Reclaimed (non-potable) water should be used whenever possible.
- Spray dirt stockpile areas daily as needed.
- Place gravel on all roadways and driveways as soon as possible after grading. In addition, construct building pads as soon as possible after grading unless seeding or frequent water application are used.
- Not exceed a 15-mph vehicle speed for all construction vehicles on any unpaved surface at the construction site.
- Cover or maintain at least 2 feet of freeboard (minimum vertical distance between top of load and top of trailer) on all trucks hauling dirt, sand, soil, or other loose materials in accordance with California Vehicle Code Section 23114.
- Limit unpaved road travel to the extent possible, for example, by limiting the travel to and from unpaved areas, by coordinating movement between work areas rather than to central staging areas, and by busing workers where feasible.

- Install wheel washers where vehicles enter and exit unpaved roads onto streets, or wash off trucks and equipment leaving the site, and inspect vehicle tires to ensure free of soil prior to carry-out to paved roadways.
- Sweep streets at the end of each day, or as needed, if visible soil material is carried onto adjacent paved roads. Water sweepers with reclaimed water shall be used where feasible.

SC AQ-2.2 Designate a Dust Compliance Monitor

The project applicant shall require the contractor(s) or builder(s) to designate a person or persons to monitor the fugitive dust emissions and enhance the implementation of the measures as necessary to minimize dust complaints, reduce visible emissions below 20 percent opacity, and to prevent transport of dust off-site. Their duties shall include monitoring during holidays and weekend periods when work may not be in progress. The name and telephone number of such persons shall be provided to the MBARD Compliance Division prior to the start of any grading, earthwork, or demolition. The project applicant shall provide and post a publicly visible sign that specifies the telephone number and name to contact regarding dust complaints. This person shall respond to complaints and take corrective action within 48 hours. The phone number of the MBARD shall also be visible to ensure compliance with Rule 402 (Nuisance).

c) Expose sensitive receptors to substantial pollutant concentrations?

Less than significant impact. Under CEQA, residences, schools, daycare centers, and healthcare facilities, such as hospitals, or retirement and nursing homes, are considered sensitive receptors. For this project, Fort Ord Dunes State Park is also considered a receptor to be considered. Some portions of the busway facilities would be located approximately 120 feet from the nearest residential property line. This distance, and the fact that the project would utilize zero emission vehicles, would not expose these residential receptors to substantial pollutant concentrations.

The proposed project involves roadway improvements that would not result in stationary emissions. The project would also include a transit center with approximately 181 parking spaces. However, the nearest sensitive receptors to the proposed transit center are over 2,300 feet away. Thus, the project would not result in a substantial increase in traffic-related pollutant concentrations that could affect sensitive receptors. Furthermore, the dust and equipment exhaust emissions created during construction would be minimal and would be controlled by compliance with MBARD Dust Construction Mitigation Measures. See **Appendix 6** for additional detail.

d) Result in other emissions (such as those leading to odors adversely affecting a substantial number of people?

Less than significant impact. Construction activities associated with the project may generate detectable odors from heavy duty equipment (i.e., diesel exhaust), as well as from architectural coatings and asphalt off-gassing. Any construction-related odors would be short-term in nature and cease upon project completion. Therefore, impacts would be less than significant. See **Appendix 6** for additional details.

4.4 Biological Resources

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?		х		
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?		х		
c) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?				х
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?			X	
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?		Х		
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?			Х	

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

Potentially significant unless mitigation incorporated. Portions of the project are located within the Coastal Zones of the City of Marina and within land immediately adjacent to the City of Seaside and Fort Ord Dunes State Parks. The Coastal Zones support a diversity of environmentally sensitive habitats, such as coastal scrub and dune scrub that occur along the California coast. Special status species known to potentially occur within the project site include the Townsend's big-eared bat, Monterey dusky-footed woodrat, Northern California legless lizard, Coast horned lizard, Smith's blue butterfly, and nesting raptors and other protected avian species. Despite the disturbed condition of the site, there is the potential for these species to be present. To avoid potential impacts associated with project construction the following mitigation measures would be incorporated into the project to reduce impacts to special status species in the project area to a less than significant level. See Appendix 7 for detailed discussions on vegetation, sensitive habitats, and special status species within the project alignment.

Mitigation Measures/Project Conditions (For All Project Segments)

MM BIO-1.1 Construction Best Management Practices

The following best management practices will be implemented during construction (i.e., pre-, during, and post-construction) to reduce impacts to special-status plant and wildlife species:

- A qualified biologist will conduct an Employee Education Program for the construction crew prior to any construction activities. The qualified biologist will meet with the construction crew at the onset of construction at the project site to educate the construction crew on the following: 1) the appropriate access route(s) in and out of the construction area and review project boundaries; 2) how a biological monitor will examine the area and agree upon a method which will ensure the safety of the monitor during such activities, 3) the special-status species and sensitive habitats that are known or may be present; 4) the specific mitigation measures that will be incorporated into the construction effort; 5) the general provisions and protections afforded by USFWS and CDFW; and 6) the proper procedures if a special-status species is encountered within the project site.
- Trees and vegetation not planned for removal or trimming will be protected prior to and during construction to the maximum possible through the use of exclusionary fencing, such as hay bales for herbaceous and shrubby vegetation, and protective wood barriers for trees. Only certified weed-free straw will be used to avoid the introduction of non-native, invasive species. A biological monitor will supervise the installation of protective fencing and monitor at least once per week until construction is complete to ensure that the protective fencing remains intact.
- Following construction, disturbed areas will be restored to pre-project contours to the maximum extent possible and revegetated using locally-occurring native species

and native erosion control seed mix, per the recommendations of a qualified biologist.

- Grading, excavating, and other activities that involve substantial soil disturbance will be planned and implemented in consultation with a qualified hydrologist, engineer, or erosion control specialist, and will utilize standard erosion control techniques to minimize erosion and sedimentation to native vegetation (pre-, during, and postconstruction).
- No firearms will be allowed on the project site at any time.
- All food-related and other trash will be disposed of in closed containers and removed from the project area at least once a week during the construction period, or more often if trash is attracting avian or mammalian predators. Construction personnel will not feed or otherwise attract wildlife to the area.

MM BIO-1.2 Construction-Phase Monitoring

The applicant will retain a qualified biologist to monitor all ground disturbing construction activities (i.e., vegetation removal, grading, excavation, or similar activities) of the project to protect any special-status species encountered. Any handling and relocation protocols of special-status wildlife species will be determined in coordination with CDFW prior to any ground disturbing activities, and will be conducted by a qualified biologist with appropriate scientific collection permit. After ground disturbing project activities are complete, the qualified biologist will train an individual from the construction crew to act as the on-site construction biological monitor. The construction biological monitor will be the contact for any special-status wildlife species encounters, will conduct daily inspections of equipment and materials stored on site and any holes or trenches prior to the commencement of work, and will ensure that all installed fencing stays in place throughout the construction period. The qualified biologist will then conduct regular scheduled and unscheduled visits to ensure the construction biological monitor is satisfactorily implementing all appropriate mitigation protocols. Both the qualified biologist and the construction biological monitor must work through the State Inspector to cease construction contractor work and/or redirect project activities to ensure protection of resources and compliance with all environmental permits and conditions of the project. The qualified biologist and the construction biological monitor shall complete a daily log summarizing activities and environmental compliance throughout the duration of the project. The log will also include any specialstatus wildlife species observed and relocated.

MM BIO-1.3 Non-Native, Invasive Species Controls

The following measures will be implemented to reduce the introduction and spread of non-native, invasive species:

 Any landscaping or replanting required for the project will not use species listed as noxious by the California Department of Food and Agriculture (CDFA) or invasive by the California Invasive Plant Council (Cal-IPC).

- Bare and disturbed soil will be landscaped with CDFA recommended seed mix or plantings from locally adopted species to preclude the invasion on noxious weeds in the project site.
- Construction equipment will be cleaned of mud or other debris that may contain invasive plants and/or seeds and inspected to reduce the potential of spreading noxious weeds, before mobilizing to arrive at the construction site and before leaving the construction site.
- All non-native, invasive plant species will be removed from disturbed areas prior to replanting.

MM BIO-1.4 Pre-Construction Surveys for Protected Avian Species

Construction activities that may directly (e.g., vegetation removal) or indirectly (e.g., noise/ground disturbance) affect protected nesting avian species will be timed to avoid the breeding and nesting season. Specifically, vegetation and/or tree removal can be scheduled after September 16 and before January 31. Alternatively, a qualified biologist will be retained by the project applicant to conduct pre-construction surveys for nesting raptors and other protected avian species within 500 feet of proposed construction activities if construction occurs between February 1 and September 15. Pre-construction surveys will be conducted no more than 14 days prior to the start of construction activities during the early part of the breeding season (February through April) and no more than 30 days prior to the initiation of these activities during the late part of the breeding season (May through August). Because some bird species nest early in spring and others nest later in summer, surveys for nesting birds may be required to continue during construction to address new arrivals, and because some species breed multiple times in a season. The necessity and timing of these continued surveys will be determined by the qualified biologist based on review of the final construction plans and in coordination with the CDFW, as needed.

If raptors or other protected avian species nests are identified during the preconstruction surveys, the qualified biologist will notify the project applicant and an appropriate no-disturbance buffer will be imposed within which no construction activities or disturbance should take place (generally 500 feet in all directions for raptors; other avian species may have species-specific requirements) until the young of the year have fledged and are no longer reliant upon the nest or parental care for survival, as determined by a qualified biologist.

Mitigation Measures (For Segments 1-4 and 5th Street Station)

MM BIO-1.5 Pre-Construction Surveys for Monterey Dusky-Footed Woodrat

Not more than thirty (30) days prior to the start of construction of Segments 1-4 and the 5th Street Station (including vegetation removal), a qualified biologist shall conduct a survey of suitable habitat within the work site to locate existing Monterey dusky-footed woodrat nests. All Monterey dusky-footed woodrat nests shall be mapped and flagged for avoidance. Graphics depicting all Monterey dusky-footed woodrat nests shall be

provided to the construction contractor. Any Monterey dusky-footed woodrat nests that cannot be avoided shall be relocated according to the following procedures:

- Each active nest shall be disturbed by the qualified biologist to the degree that the woodrats leave the nest and seek refuge elsewhere.
- Nests shall be dismantled during the non-breeding season (between October 1 and December 31), if possible.
- If a litter of young is found or suspected, nest material shall be replaced and the nest left alone for 2-3 weeks, after this time the nest will be rechecked to verify that young are capable of independent survival before proceeding with nest dismantling.

MM BIO-1.6 Pre-Construction Surveys for Townsend's Big-eared Bat

To avoid and reduce impacts to Townsend's big-eared bat, if the project construction is planned during the reproductive season (May 1 through September 15) MST will retain a qualified bat specialist or wildlife biologist to conduct site surveys to characterize bat utilization within and adjacent to the project site and potential species present (techniques utilized to be determined by the biologist) prior to construction. Based on the results of these initial surveys, one or more of the following will occur:

- If it is determined that bats are not present within or adjacent to the site, no additional mitigation is required.
- If it is determined that bats are utilizing the trees or abandoned buildings within or adjacent to the site and may be impacted by the proposed project, pre-construction surveys will be conducted within 50 feet of construction limits no more than 30 days prior to the start of construction. If, according to the bat specialist, no bats or bat signs are observed in the course of the pre-construction surveys, construction may proceed. If bats and/or bat signs are observed during the pre-construction surveys, the biologist will determine if disturbance will jeopardize the roost (i.e., maternity, foraging, day, or night).

Mitigation Measures (For Segments 1-4)

MM BIO-1.7 SBB Avoidance and Restoration

The host plant species for SBB (i.e. seacliff and dune buckwheat) shall be avoided to the greatest extent feasible. SBB habitat not scheduled for removal shall be protected prior to and during construction to the maximum possible extent through the use of exclusionary fencing or flagging, such as construction fencing or hay bales. Only certified weed-free straw will be used to avoid the introduction of non-native, invasive species. An experienced biological monitor, trained by a qualified biologist will supervise the installation of protective fencing and monitor at least once per week until construction is complete to ensure that the protective fencing remains intact.

If avoidance is not feasible:

- The duff and/or associated soil and plant material underneath the presumed-occupied seacliff or dune buckwheat plants that will be impacted by the project will be removed by hand by a USFWS-approved biologist prior to disturbance, and will be placed as close as possible to, but not on, living seacliff or dune buckwheat plants not scheduled for removal, within the boundaries of exclusionary fencing/flagging.
- The number of plants removed will be quantified and shall be replaced at a 1:1 success ratio for the acreage or individuals impacted. A Restoration Plan shall be prepared by a qualified biologist and implemented. The plan shall include, but is not limited to, the following:
 - A description of the baseline conditions of the habitats within the work site, including the presence of any special-status species, their locations, and densities;
 - Procedures to control and/or eliminate non-native invasive species within the work site;
 - A detailed description of on-site and/or off-site restoration areas, salvage of seed and/or soil bank, plant salvage, seeding and planting specifications, which may include, but is not limited to, an increased planting ratio to ensure the 1:1 success ratio, if required by the USFWS; and
 - A monitoring program that describes annual monitoring efforts which incorporate success criteria and contingency plans if success criteria are not met.

MM BIO-1.8 Special-Status Plant Avoidance and Restoration

Rare plants (i.e. Hooker's manzanita, sandmat manzanita, Monterey spineflower, coast wallflower, and Kellogg's horkelia) shall be avoided to the greatest extent feasible. Rare plants not scheduled for removal shall be protected prior to and during construction to the maximum extent possible through the use of exclusionary fencing or flagging, such as construction fencing or hay bales. Only certified weed-free straw will be used to avoid the introduction of non-native, invasive species. A biological monitor will supervise the installation of protective fencing and monitor at least once per week until construction is complete to ensure that the protective fencing remains intact.

If avoidance is not feasible, the impacted area for each species shall be quantified during final design and each species shall be replaced at a 1:1 success ratio for the acreage or individuals impacted (depending on species impacted) and a Restoration Plan shall be prepared by a qualified biologist and implemented. The plan shall include, but is not limited to, the following:

- A description of the baseline conditions of the habitats within the work site, including the presence of any special-status species, their locations, and densities;
- Procedures to control and/or eliminate non-native invasive species within the work site;

- A detailed description of on-site and/or off-site restoration areas, salvage of seed and/or soil bank, plant salvage, seeding and planting specifications, which may include but is not limited to, an increased planting ratio to ensure the 1:1 success ratio; and
- A monitoring program that describes annual monitoring efforts which incorporate success criteria and contingency plans if success criteria are not met.

MM BIO-1.9 FESA Compliance

MST will comply with the Federal Endangered Species Act (FESA) and will obtain necessary authorization prior to construction of Segments 1-4.

Due to the presence and potential presence of federally listed species within the project site, including the SBB and Monterey spineflower, and Federal nexus (i.e., Federal funding), the Federal Transit Administration, acting as the NEPA lead agency for the proposed project, shall be required to initiate a Section 7 consultation with the USFWS and prepare a written analysis in the form of a Biological Assessment (BA) to determine whether their actions may affect a listed species. Based on the BA, the USFWS will issue a Biological Opinion (BO) regarding likely impacts as a result of implementing the project. Any further avoidance and minimization measures that may be required as a component of the BO will be implemented.

Mitigation Measures (For 5th Street Station)

MM BIO-1.10 Special-Status Plant Surveys and HMP Compliance

A qualified biologist shall be retained to conduct surveys for Monterey spineflower and Yadon's piperia within the 5th Street Station. The surveys shall be conducted during the appropriate identification period(s) to determine presence or absence, according to USFWS, CDFW, and CNPS protocol. The biologist shall prepare a report that provides the results of the survey, and, if found the number and locations of individuals/populations identified.

- If no Monterey spineflower or Yadon's piperia are found, no further mitigation is necessary.
- If Monterey spineflower or Yadon's piperia are found, salvage efforts for these species will be evaluated by a qualified biologist in coordination with the MST prior to construction to further reduce impacts per the requirements of the HMP and 2017 Programmatic BO. Where salvage is determined feasible and proposed, seed collection should occur from plants within the development site and/or topsoil should be salvaged within occupied areas to be disturbed. Seeds should be collected during the appropriate time of year for each species as determined by the qualified biologist. The collected seeds and topsoil should be used to revegetate temporarily disturbed construction areas and reseeding and restoration efforts on- or off-site, as determined appropriate by the qualified biologist and MST.

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?

Potentially significant unless mitigation incorporated. The project could result in impacts to sensitive natural communities, however, no riparian habitat or waters of the U.S. and/or State were documented within the project site. The project area lies within the California Coastal Zone (Coastal zone), specifically within the boundaries of the Marina, Sand City, and Seaside Local Coastal Plans, as well as California Coastal Commission's original jurisdiction. The LCPs from these agencies address coastal resources, including the protection of biological and wetland resources.

As noted above, some of these specific habitats include coastal scrub and dune scrub that occur along the California coast. Additional areas within the project site that may be considered ESHA include habitat for the Smith's blue butterfly and areas supporting rare plants. To avoid potential impacts associated with project construction to these sensitive habitats, mitigation measures MMs BIO-1.1 through BIO-1.10 and BIO-2.11 would be implemented to reduce impacts to sensitive habitats and ESHA to a less-than-significant level. See **Appendix 7** for detailed discussions on sensitive habitats and ESHA within the project alignment.

Mitigation Measure/Project Conditions

MM BIO-2.11 Dune Scrub Restoration

Dune scrub shall be avoided to the greatest extent feasible. If avoidance is not feasible, dune scrub habitat shall be replaced at a 1:1 success ratio for the acreage impacted and a Restoration Plan shall be prepared by a qualified biologist and implemented. The plan shall include, but is not limited to, the following:

- A description of the baseline conditions of the habitat that will be impacted;
- A detailed description of on-site and/or off-site restoration areas, a planting palette, salvage of seed and/or soil bank, plant salvage, seeding and planting specifications, which may include, but is not limited to, an increased planting ratio to ensure the 1:1 success ratio;
- Procedures to control and/or eliminate non-native invasive species within the restoration site; and
- A monitoring program that describes annual monitoring efforts which incorporate success criteria and contingency plans if success criteria are not met.
- c) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological?

No impact. No State or federally protected wetlands are present within the project area. For these reasons, these topics are not discussed further in this document.

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Less than significant impact. The project site is not located within any significant wildlife movement corridors or linkages. See Appendix 7 for additional details. The majority of the project site is comprised of ruderal and/or developed areas and runs adjacent to existing roads, Highway 1, shopping centers, and other businesses, which in general isolates the project site from other undeveloped areas. As such, the project site provides little use as a corridor for wildlife movement. Therefore, the proposed project would not disconnect, fragment, or otherwise impeded wildlife movement in the primary, significant wildlife movement corridors in the area.

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

Potentially significant unless mitigation incorporated. Construction of the proposed project could result in permanent impacts to trees within the project site; however, the number or type of trees to be removed have not been identified at this time. However, based on the biological resource surveys conducted (see Appendix 7) it is conservatively estimated for planning purposes that 60 to 90 regulated trees may require removal along the alignment if they cannot be avoided through design. Removal of native and other important trees are protected under local tree removal ordinances and impacts are typically addressed and mitigated under CEQA. Implementation of MM BIO-4.12 requires that native trees be avoided and protected during construction to the greatest extent feasible and that native trees removed be replaced at a 1:1 mitigation ratio. Implementation of this measure will ensure compliance with local policies or ordinances protecting trees, reducing potential impacts to less-than-significant. See Appendix 7 for detailed discussion.

Mitigation Measure

MM BIO-4.12 Native Tree Protection and Replacement Measures

To maximize native tree retention and protection, a forester, arborist, or other tree care professional shall be involved in the review and development of final grading and construction plans wherever trees occur within the site or at the grading margins. To avoid unintended impacts to native trees outside the construction area, the following native tree protection measures shall be implemented:

Temporary construction fencing shall be placed at approximately 10 feet from the trunk, limiting work within the dripline (e.g. and no grading, trenching, or vegetative alteration shall occur within this environmental exclusion zone). Grading, vegetation removal, and other ground disturbing construction activities may not commence until the project forester has inspected and approved the protective fencing installed by the contractor. No equipment or materials, including soil, shall be stored within the established environmental exclusion zone. Prior to grading within 25 feet of retained trees, the project forester, arborist, or other tree care professional shall be consulted to determine whether pruning is necessary to protect limbs from grading equipment.

- To avoid soil compaction from damaging the roots, heavy equipment shall not be allowed to drive over the root area. If deemed necessary and approved by the forester, equipment may drive across one side of the tree. To reduce soil compaction, wood chips shall be spread 6-12 inches deep to disperse the weight of equipment and plywood sheets shall be placed over the wood chips for added protection.
- Roots exposed by excavation must be pruned and recovered as quickly as possible to promote callusing, closure, and healthy regrowth.
- Retained trees shall be watered periodically in accordance with species need to promote tree health. Transplanted trees and their intended planting areas shall be pre-watered. Post planting watering shall be done as needed to assure establishment.
- When project design is completed, an estimate of the appropriate number of replacement trees shall be made based on available planting space. These replacement trees (minimum five-gallon specimens) shall be planted along boundaries and within landscape areas. Planting density for replacement trees shall be accurately detailed to allow for some unavoidable mortality over time.
- Transplants are encouraged and shall be credited on a 1:1 basis. Final replanting numbers may be modified by additional tree retention and should be made part of the final landscaping plan.
- f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Less than significant impact. The project site is not located within an approved Habitat Conservation Plan (HCP) or Natural Community Conservation Plan (NCCP) area. However, the 5th Street Station is located within the former Fort Ord and the plan area of the Fort Ord Habitat Management Plan (HMP). See **Appendix 7** for more detail regarding project's consistency with the approved Fort Ord HMP.

4.5 Cultural Resources

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Wo	ould the project:				
a)	Cause a substantial adverse change in the significance of a historical resource pursuant to in § 15064.5?			х	
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?		Х		
c)	Disturb any human remains, including those interred outside of dedicated cemeteries?		Х		

a) Cause a substantial adverse change in the significance of a historical resource pursuant to in § 15064.5?

Less than significant impact. Implementation of the proposed action would not result in operational-related impacts to historic architectural resources because the proposed action would not directly or indirectly affect any identified historic resource within or near the project alignment. While three historic era resources were identified – the MBL, Fort Ord loading platform and commercial structure on Del Monte Boulevard – these resources were determined in the historic resource evaluation to be ineligible for historic status or listing on any State, federal or local historic register. See Appendix 8 for detailed discussion.

- b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?
- c) Disturb any human remains, including those interred outside of dedicated cemeteries?

Potentially significant Impact unless mitigation incorporated. While no prehistoric sites have been identified within or near the project alignment, the potential remains to uncover or disturb previously unknown resources during the construction phase of the project. To address this potential impact, the following standard mitigation measures are required.

Mitigation Measures/Project Conditions

MM CR-1 Preconstruction Archaeological and Paleontological Sensitivity Training

Prior to construction, all personnel directly involved in project related ground

disturbance shall be provided archaeological and paleontological sensitivity training. The training will be conducted by a qualified Archaeologist and Paleontologist that meet the Secretary of the Interior's standards for archaeology and CEQA qualifications for paleontology. The training will take place at a day and time to be determined in conjunction with the project construction foreman, and prior to any scheduled ground disturbance. The training will include: a discussion of applicable laws and penalties; samples or visual aids of artifacts and paleontological resources that could be encountered in the project vicinity, including what those artifacts and resources may look like partially buried, or wholly buried and freshly exposed; and instructions to halt work in the vicinity of any potential cultural resources discovery, and notify the archaeological or paleontological monitor as necessary.

MM CR-2 Procedures for Inadvertent Discovery

Inadvertent Discovery of Archaeological or Tribal Cultural Resources
In the event archaeological resources are encountered during ground disturbing
activities, contractor shall temporarily halt or divert excavations within a 100-foot radius
of the find until it can be evaluated.

CEQA Guidelines requires that all potentially significant archaeological deposits be evaluated to demonstrate whether the resource is eligible for inclusion on the California Register of Historic Resources, even if discovered during construction. If archaeological deposits are encountered they will be evaluated and mitigated simultaneously in the timeliest manner practicable, allowing for recovery of materials and data by standard archaeological procedures. For prehistoric archaeological sites, this data recovery involves the hand-excavated recovery and non-destructive analysis of a small sample of the deposit. Historic resources are also sampled through hand excavation, though architectural features may require careful mechanical exposure and hand excavation.

Any previously undiscovered resources found during construction activities shall be recorded on appropriate California Department of Parks and Recreation (DPR) forms and evaluated for significance in terms of CEQA criteria by a qualified Archaeologist. Significant cultural resources consist of but are not limited to stone, bone, glass, ceramics, fossils, wood, or shell artifacts, or features including hearths, structural remains, or historic dumpsites. If the resource is determined significant under CEQA, a qualified Archaeologist shall prepare and implement a research design and archaeological data recovery plan that will capture those categories of data for which the site is significant in accordance with Section 15064.5 of the CEQA Guidelines.

If such resources or artifacts are determined to be of native tribal origin, any mitigation or recovery program shall include direction from Ohlone/Costanoan Esselen Nation (OCEN) tribal leadership for proper handling and treatment.

The Archaeologist shall also perform appropriate technical analyses, prepare a comprehensive report complete with methods, results, and recommendations, and provide for the permanent curation of the recovered resources. The report shall be submitted to MST, TAMC, the NWIC, and the State Historic Preservation Office, as

required.

Inadvertent Discovery of Paleontological Resources

A qualified Paleontologist (per CEQA definition) shall be retained to supervise monitoring of construction excavations and to produce a Paleontological Monitoring and Mitigation Plan for the project based on the location and depth of excavation. Project related excavations that occur in surficial younger (Holocene-age) alluvial and fluvial deposits and/or topsoil (less than 10 feet in depth) will be monitored on a periodic basis to ensure that the potential underlying paleontologically sensitive sediments are not being affected. Paleontological resource monitoring will include inspection of exposed rock units during active excavations within sensitive geologic sediments, if present.

The paleontological monitor will have the authority to temporarily divert grading away from exposed fossils to professionally and efficiently recover the fossil specimens and collect associated data. All efforts to avoid delays to project schedules will be made. Collected fossils will be transported to a paleontological laboratory for processing, identification, analysis and curation. The qualified Paleontologist shall prepare a final monitoring and mitigation report to be filed with MST and, if fossil resources are found, the repository.

Inadvertent Discovery of Human Remains

In the event that human remains (or remains that may be human) are discovered at the project site, Public Resource Code Section 5097.98 must be followed. All grading or earthmoving activities shall immediately stop within a 100-foot radius of the find. The project proponent shall then inform the Monterey County Coroner and the respective city (e.g. City of Marina, Sand City, or Seaside) immediately, and the Coroner shall be permitted to examine the remains as required by California Health and Safety Code Section 7050.5(b).

Section 7050.5 requires that excavation be stopped in the vicinity of discovered human remains until the Coroner can determine whether the remains are those of a Native American. If human remains are determined as those of Native American origin, the Applicant shall comply with the state relating to the disposition of Native American burials that fall within the jurisdiction of the NAHC (Public Resource Code [PRC] § 5097). The Coroner shall contact the NAHC to determine the most likely descendant(s) (MLD). The MLD shall complete his or her inspection and make recommendations or preferences for treatment within 48 hours of being granted access to the site. The MLD will determine the most appropriate means of treating the human remains and associated grave artifacts, and shall oversee the disposition of the remains.

In the event the NAHC is unable to identify an MLD or the MLD fails to make a recommendation within 48 hours after being granted access to the site, the landowner or his/her authorized representative shall rebury the Native American human remains and associated grave goods with appropriate dignity within the project area in a location not subject to further subsurface disturbance.

4.6 Energy

Issues	CONMENTAL IMPACTS If the project:	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Re en ind	esult in potentially significant environmental impact due to wasteful, efficient, or unnecessary consumption of energy resources, during project enstruction or operation?			х	
pla	onflict with or obstruct a state or local an for renewable energy or energy ficiency?			Х	

a) Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

Less than significant impact. The Pacific Gas & Electric Company (PG&E) provides electricity and natural gas service to the Project area. The proposed project would reduce congestion on Highway 1 from local and inter-regional commuter traffic by providing an accessible 100 percent zero emission transit alternative. The project would result in a nominal increase in electricity and natural gas demand. This nominal increase represents an insignificant percent increase compared to overall demand in PG&E's service area. Therefore, projected electrical and natural gas demand would not significantly impact PG&E's level of service.

During construction, transportation energy use depends on the type and number of trips, vehicle miles traveled, fuel efficiency of vehicles, and travel mode. Transportation energy use during construction would come from the transport and use of construction equipment, delivery vehicles and haul trucks, and construction employee vehicles that would use diesel fuel and/or gasoline. The use of energy resources by these vehicles would fluctuate according to the phase of construction and would be temporary. Most construction equipment during demolition and grading would be gas-powered or diesel-powered, and the later construction phases would require electricity-powered equipment. Impacts related to transportation energy use during construction would be temporary and would not require expanded energy supplies or the construction of new infrastructure; impacts would not be significant.

During operations, energy consumption associated with operation of the zero-emission busses would be nominal. Furthermore, the project site and surrounding areas are highly urbanized with numerous gasoline fuel facilities and infrastructure. Consequently, the proposed project would not result in a substantial demand for energy that would require expanded supplies or the construction of other

infrastructure or expansion of existing facilities. Additionally, fuel consumption associated with vehicle trips generated by the proposed project would not be considered inefficient, wasteful, or unnecessary. The proposed project would not result in wasteful, inefficient, or unnecessary consumption of energy resources. Therefore, impacts are considered less than significant, and no mitigation is required.

b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

Less than significant impact. The project is a transit facility designed to carry passengers that would utilize almost no energy, except what may be required for low intensity safety lighting along the corridor. The project is not anticipated to require natural gas. The project would result in 7 MTCO2e/yr from energy consumption. See **Appendix 11** for discussion on the project's energy consumption during operations and project consistency with policies and actions identified in the City of Marina, Seaside, and Sand City's general plans.

4.7 Geology and Soils

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:				
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.			Х	
ii) Strong seismic ground shaking?			Х	
iii) Seismic-related ground failure, including liquefaction?			Х	
iv) Landslides?			Х	
b) Result in substantial soil erosion or the loss of topsoil?			Х	
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?		х		
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?			Х	
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?				х

	NVIRONMENTAL IMPACTS sues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
f)	Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?		Х		

- a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:
 - i. Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

Less than significant impact. The project site is not located within an Alquist-Priolo Earthquake Fault Zoning Map as mapped by the State Geologist. There are four faults that cross the project alignment: the Chupines Fault, Seaside Fault, Ord Terrace Fault, and Reliz Fault. However, these faults are not considered sufficiently active or well-defined. The potential is very low that the individual traces of these faults could generate an earthquake and result in surface fault rupture. See **Appendix 10** for additional details.

ii. Strong seismic ground shaking?

Less than significant impact. Four faults cross the project alignment, however, none of these faults are currently considered active and their potential for surface-rupture is considered very low to low. The largest ground motion would likely be the result of movement along the Monterey Bay-Tularcitos Fault. However, the project is primarily a roadway project, and would be required to be designed and constructed to withstand substantial ground shaking in order to minimize seismic impacts. Compliance with currently structural codes to address the potential for ground shaking and structure stability would reduce impacts to a less-than-significant level.

iii. Seismic-related ground failure, including liquefaction?

Less than significant impact. Liquefaction generally occurs as a "quicksand" type of ground failure caused by strong ground shaking. The primary factors influencing liquefaction potential include groundwater, soil type, relative density of the sandy soils, confining pressure, and the intensity and duration of ground shaking. As shown in Exhibit 4.4.3 of the Monterey County General Plan EIR, the potential for liquefaction to occur at the project site is low. See **Appendix 10** for additional discussion.

iv. Landslides?

Less than significant impact. The majority of the project alignment traverses relatively flat terrain on existing roadways or adjacent to existing railroad tracks, where landslides and slope instability are not a

concern. Based on a search of the California Department of Conservation Landslide Inventory, the project site has gentle to low slope gradients. The potential for deep seated land sliding to occur in the bedrock is low to nil.

b) Result in substantial soil erosion or the loss of topsoil?

Less than significant impact. The soils at the project site have a moderate to high soil erosion potential. The majority of the project site is on existing hardscaped railway and is surrounded by coastal vegetation. The southern end of the project site is surrounded by hardscape surfaces, limiting the potential for downstream/off-site erosion impacts on neighboring property. Because the project site is already in a developed area and surrounded by vegetation, there is a lower potential for off-site erosion impacts to occur during construction. Construction and water quality best practices as required by existing codes and regulations will limit erosion on the relatively small construction footprint of the project. Design features such as footing placement away from slopes and footing depths will minimize erosion during and following construction.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Potentially significant unless mitigation incorporated. The project site is located on soils that are good for use as roadway fills and firm overburden soils that are suitable for foundation support. However, the potential for soil erosion is high in areas where younger and older dune sand deposits are, especially if not covered by vegetation. While the geologic unit below the project is very stable, the site is nonetheless subject to common risks associated with the local soils. With implementation of Mitigation Measure (MM) GEO-5 and adherence to local building and engineering standards, the site's geologic and soil constraints would be reduced to a less-than-significant level through construction-level geotechnical recommendations and compliance with all applicable codes and regulations. See **Appendix 10** for detailed discussion on the potential for landslides, liquefaction and subsidence, lateral spreading, collapse, and expansive soils as a result of the project.

Mitigation Measure/Project Conditions

MM GEO-5 Final Geotechnical Evaluation

A construction level geotechnical evaluation shall be prepared and implemented for the project based on the final engineering plans. The project shall be required to adhere to and incorporate all standards and recommended engineering measures to mitigate for liquefaction, expansive soils and other local soil constraints. The final geotechnical evaluation will be prepared by MST and provided to the affected land use agencies for review prior to the issuance of local building permits or related local approvals.

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?

Less than significant impact. As discussed above, the subsurface profile of the site generally consists of Baywood sand and Oceano loamy sand. Based on a review of environmental databases, soils in the

project site, both Baywood and Ocean Series are composed of sand and have low water storage potential and a low potential for expansion. Thus, impacts would be less than significant. See **Appendix 10** for additional details.

e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

No impact. The proposed project would not require the extension or installation of wastewater connections as this service is not essential to busway operations. However, should restrooms be required for the 5th Street Station in the future, MST would seek water and wastewater connections from the City of Marina.

f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

Potentially significant unless mitigation incorporated. See Appendix 8. Based on the previous paleontological resource assessment covering the proposed project alignment, no paleontological resources were identified. The likelihood of encountering unique paleontological resources was determined to be low to high with increasing depth. Excavation depths for the project will be shallow. Because there is the potential to uncover paleontological resources in previously undisturbed portions of the project area, ground disturbing activities during construction could potentially result in significant impacts to paleontological resources. Implementation of MM CR-1 and MM CR-2 would require all construction personnel involved in project-related ground disturbances to be provided archaeological and paleontological sensitivity training and effectively mitigate potential effects to paleontological resources.

4.8 Greenhouse Gas Emissions

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Wo	ould the project:				
a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			х	
b)	Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?			х	

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

Less than significant impact. For the purpose of this environmental analysis, the project's construction-related GHG emissions were forecasted based on the proposed construction schedule and applying the mobile-source and fugitive dust emissions factors derived from CalEEMod. The project's construction-related GHG emissions would be generated from off-road construction equipment, on-road hauling and vendor (material delivery) trucks, and worker vehicles. Project construction-related activities would generate approximately 1,088 MTCO₂e of GHG emissions over the course of construction. However, project construction-related GHG emissions would be short term and would cease once construction is complete. This is less than the CARB Mandatory Reporting applicability level of 2,500 MTCO₂e per year. See Appendix 11 for a detailed discussion on construction-related impacts from GHG emissions.

Operational or long-term emissions would occur over the project's life. The project consists of approximately 6 linear miles of roadway surface and related improvements to provide dedicated express busway service that would ultimately be expected to reduce greenhouse gas emissions in the Monterey Bay region. The majority of project emissions (approximately 100 percent) would occur from mobile and energy sources. Although MBARD does not have adopted GHG emission significance thresholds, the project's estimated GHG emissions (about 219.19 MT/ CO_2e year) is well below the significance threshold of 1,100 MTCO₂e per year used in neighboring air districts and the 2,000 MT of CO_2e /year threshold that had been under consideration by the MBARD. See **Appendix 11** for a detailed discussion on operational-related impacts from GHG emissions.

b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Less than significant impact. As discussed above in Impact a), the project would not exceed significance thresholds for construction or operation of the project. The proposed BRT project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs. See **Appendix 11** for a more detailed discussion.

4.9 Hazards and Hazardous Materials

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
W	ould the project:				
a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?			Х	
b)	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?			Х	
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?			Х	
d)	Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?		X		
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?			Х	
f)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				х

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?				х

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Less than significant impact. The normal operation of the SURF! busway along the right of way will not involve the routine transport, use or disposal of hazardous materials other than may be required for routine maintenance. This project is a transit facility designed to carry passengers. Construction of the project would require staging, site preparation, grading and construction of the new busway and station. These activities may require the use of heavy equipment that would need refueling and/or limited maintenance on site, as well as the use of materials and chemical processes typical of roadway construction. However, as the project alignment is not in a heavily populated area and would not involve the routine transport or disposal of hazardous materials, construction effects are less than significant. See Appendix 12 for detailed discussion.

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Less than significant impact. As discussed above, the busway project is a transit project that will transport people, not hazardous materials. For these reasons, normal project operations will not result in significant environmental hazards because the project will not use, transport, or expose people or property to such materials. However, based on the Phase I site investigations conducted along the alignment, hazardous wastes may be encountered during the construction process and hazardous materials may be used or generated during the construction process. Implementation of the following mitigation measures would reduce potential impacts related to reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment during project construction. See Appendix 12 for additional details.

Mitigation Measures/Project Conditions

MM HAZ-2.1: Soil and Groundwater Management Plan

A Soil and Groundwater Management Plan shall be prepared prior to ground disturbance, identifying the methods and procedures required to handle, store, transport and dispose of chemically impacted soil and groundwater. If groundwater is encountered during construction, groundwater sampling shall be conducted to determine contaminants and contamination levels. If contamination is found, a work

plan shall be developed and implemented by the project geotechnical engineer consistent with the Management Plan to protect the health of construction workers.

MM HAZ-2.2: Work Plan

Once the construction plans showing the depth and extent of the excavation are completed for all project segments, a targeted soil and groundwater sampling shall be conducted in areas of known or suspected contamination prior to the start of disturbance in those areas. If contamination is found, a work plan shall be developed by the project geotechnical engineer to protect the health of construction workers.

MM HAZ-2.3: Asbestos and Lead Paint Survey

Any hazardous materials or wastes encountered before or during the demolition stage of the project shall be disposed of according to current regulatory guidelines. If any structures are to be removed or demolished, an asbestos and lead paint survey shall be conducted for compliance with National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations and air district rules.

MM HAZ-2.4 Worker Health and Safety Plan

A worker health and safety plan (HSP) that meets the provisions of California Code of Regulations (Title 22, Section 5192) shall be developed by the project contractor. HSP procedures will address the identification, excavation, handling, and disposal of hazardous wastes and materials that may be found in construction areas. The HSP shall include Best Management Practices (BMPs) that all contractors must employ during construction.

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Less than significant impact. The nearest school within one-quarter mile of the busway is Seaside High School. However, any hazardous materials encountered during construction would be addressed at the site and be subject to all existing and applicable regulations regarding the handling and disposal of such materials. If the handling and disposal of contaminated soils is encountered, it may need to be transported on roadways near the high school. With the application of existing regulations, there is no acute risk associated with transport. See **Appendix 12** for additional discussion.

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

Potentially significant unless mitigation incorporated. See **Appendix 12** for a list of cleanup sites within 500 feet of the project site. As a transportation project, the busway is not considered a sensitive land use that would be affected by these conditions while in operation. Implementation of mitigation measures MM HAZ HAZ-2.1, HAZ-2.2, HAZ-2.3, and HAZ-2.4 would address residual environmental concerns if encountered during construction. See **Appendix 12** for additional information.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?

Less than significant impact. The project alignment through the City of Marina and Sand City is located within the Airport Influence Area (Zone 7) of the Marina Municipal Airport and the Monterey Regional Airport. However, the aircraft accident risk level is considered to be low within this AIA zone. Marina Municipal Airport is used for general aviation aircraft operations, and the busway project operations result in little to no risk from these operations. As such, impacts would be less than significant. See Appendix 12 for additional information.

f) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

No impact. The busway project would create a dedicated bus lane running parallel to Highway 1 within the TAMC right-of-way. As one of the objectives of the project is to relieve highway congestion, such relief would be a benefit to any emergency response plan intended to quickly and efficiently move or evacuate people. Further, the project could potentially serve as an alternative travel corridor for emergency vehicles in the event that the highway is congested. For these reasons, the project could have beneficial impacts to locally adopted emergency response plans.

g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?

No impact. The entire length of the busway alignment contains only sparse vegetation in coastal dune habitat and is highly disturbed. The proposed project corridor is within a transportation corridor and not within a Very-High Fire Hazard Severity Zone as mapped by CALFIRE. Given this lack of fuel, the project would not be susceptible to wildland fires, nor would the project pose a risk as a source of fire. Because the project is not within an area identified as having a high potential for wildland fire, the project would have no impact related to exposing people or structures to a significant risk of loss, injury, or death from wildland fire, as per CEQA Guidelines.

4.10 Hydrology and Water Quality

	VIRONMEI ues	NTAL IMPACTS	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Wo	ould the pr	oject:				
a)	waste di	iny water quality standards or scharge requirements or otherwise ially degrade surface or ground uality?			Х	
b)	supplies groundw may imp	cially decrease groundwater or interfere substantially with vater recharge such that the project lede sustainable groundwater ment of the basin?				х
c)	pattern of through stream of	cially alter the existing drainage of the site or area, including the alteration of the course of a or river or through the addition of ous surfaces, in a manner which			X	
	_	sult in substantial erosion or tation on- or off-site?			Х	
	am wh	bstantially increase the rate or nount of surface runoff in a manner nich would result in flooding on- or fsite?			Х	
	wh exi dra sul	eate or contribute runoff water nich would exceed the capacity of isting or planned stormwater ainage systems or provide bstantial additional sources of lluted runoff?			х	
d)		hazard, tsunami, or seiche zones, ase of pollutants due to project on?				х

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?			Х	

a) Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?

Less than significant impact. Construction associated with the project would include demolition, grading, excavation, and temporary land disturbance to bare areas which would displace soils and temporarily increase the potential for soils to be subject to wind and water erosion. Construction-related effects to water quality would be addressed through compliance with the National Pollutant Discharge Elimination System (NPDES) Construction General Permit (CGP). A Storm Water Pollutant Prevention Plan (SWPPP), which must include erosion-control and sediment-control BMPs for construction and post-construction conditions to control potential construction-related pollutants from migrating off site into the storm drain system and into or directly in receiving waters would be required to obtain coverage under the CGP. Compliance with these requirements would reduce potential impacts to water quality standards to a less-than-significant level. See Appendix 13 for additional details.

b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?

No impact. The project would not require the use of nor withdraw groundwater for use in construction or operation of the site, except for temporary use of privately purchased trucked water used for dust suppression during grading and construction. With appropriately designed stormwater detention, the increase in impervious surfaces from the busway lanes would not interfere with groundwater recharge. Thus, the project would have no impact to existing groundwater supply.

- c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:
 - i. Result in substantial erosion or siltation on- or off-site?
 - ii. Substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite?
 - iii. Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

Less than significant impact. See Threshold 4.10 (a) above regarding existing controls and regulations already in place to manage water quality from site construction activity and post construction runoff. As noted above, project construction will require some earth moving and excavation for construction of the busway alignment. However, the project will be required to incorporate several BMPs into the project plans and implement those measures during construction, as already required by the local agencies' stringent stormwater measures. As discussed above, the project would be required to comply with the CGP during construction and PCRs during project operation, which means the project would not result in substantial erosion or siltation on- or offsite or increase the rate of flooding on- or offsite. Similarly, as stormwater runoff would be captured and infiltrated to the extent feasible, and new stormwater facilities would be sized to meet local standards. As such, the project would not exceed the capacity of existing or planned stormwater drainage systems. See **Appendix 13** for additional information.

d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?

No impact. The project site is located within Zone X, an Area of Minimal Flood Hazard. Thus, the project site is not located within the 100-year floodplain nor a special flood hazard area as defined by the Federal Emergency Management Agency and is not at risk from inundation.

e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?

Less than significant impact. The project would not require groundwater use for project construction or operation of the site, except for temporary use of privately purchased trucked water for dust suppression during grading and construction. Thus, no conflict to groundwater supply would occur in this regard. As identified above, the project will be subject to the stringent water quality control measures during construction and will have no effect on groundwater resources. See **Appendix 13** for additional information.

4.11 Land Use and Planning

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Physically divide an established community?				х
b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?				Х

- a) Physically divide an established community?
- b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?

No impact. The project is located within an existing transportation corridor and will not significantly disrupt or divide existing neighborhoods or communities. As the busway project is intended to improve overall mobility connections for residents and visitors traveling to and from the Monterey Peninsula, the project should result in beneficial impacts by providing a safe and reliable transit connection to employment, education, and health care centers along the corridor for visitors and residents, consistent with local land use policies. See **Appendix 9** for additional information regarding consistency with local policies.

4.12 Mineral Resources

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				Х
b) Result in the loss of availability of a locally- important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				Х

- a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?
- b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

No impact. The project location and nature of the improvements will result in no impacts with respect to mineral resources. There are no known mineral resources located within the area of ground disturbance.

4.13 Noise

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
W	ould the project result in:				
a)	Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			Х	
b)	Generation of excessive groundborne vibration or groundborne noise levels?			Х	
c)	For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				х

a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Less than significant impact. The project would involve construction activities which would be temporary and have a short duration resulting in periodic increases in the ambient noise environment. Primary construction activities associated with development of the project would include site preparation, grading, retaining wall installation and paving. During construction, exterior noise levels could affect the residential neighborhoods and adjacent commercial and industrial uses at the north and south ends the construction area. Project construction would occur approximately 65 feet from existing commercial and industrial uses, and approximately 90 feet from the nearest residential uses to the north of the project site. These sensitive uses may be exposed to elevated noise levels during project construction. However, it is noted that construction activities would occur throughout the project site and would not be concentrated at a single point near sensitive receptors for an extended period of time. Project construction would be required to comply with the allowable construction hours set forth in Seaside Municipal Code Section 9.12.030, Marina Municipal Code Section 9.24.040, and Chapter 10.60 of the Monterey County Code of Ordinances. In addition, all construction equipment would be equipped

with properly operating and maintained mufflers and other state required noise attenuation devices, helping to reduce noise at the source. See **Appendix 14** for additional details.

b) Generation of excessive groundborne vibration or groundborne noise levels?

Less than significant impact. Project construction can generate varying degrees of groundborne vibration depending on the construction procedure and type of construction equipment used. The effect on buildings located near a construction site often varies depending on soil type, ground strata, and construction characteristics of the receiver buildings. The results from vibration can range from no perceptible effects at the lowest vibration levels, to low rumbling sounds and perceptible vibration at moderate levels, to slight damage at the highest levels. Groundborne vibrations from construction activities rarely reach levels that damage structures.

The Federal Transit Administration (FTA) has published standard vibration velocities for construction equipment operations (i.e., 0.20 inch/second). Groundborne vibration decreases rapidly with distance. Based on the FTA data, vibration velocities from typical heavy construction equipment operations that would be used during project construction range from 0.003 to 0.210 inches per second peak particle velocity (PPV) at approximately 25 feet from the source of activity. The nearest off-site structures are commercial buildings located approximately 25 feet from the active construction zone for the proposed project. At this distance, construction vibration levels would be approximately 0.089 in/sec PPV. Therefore, construction equipment vibration velocities would not exceed the FTA's 0.20 PPV threshold or Caltrans' human annoyance threshold of 0.1 in/sec PPV. In general, other construction activities would occur throughout the project site and would not be concentrated at the point closest to the nearest off-site structures. Therefore, vibration impacts associated with the project would be less than significant.

To determine potential project operational vibration impacts from the project, a General Vibration Assessment was prepared for project operational bus pass-bys, in accordance with the FTA Noise and Vibration Manual. The nearest off-site structure (a commercial building), and residence are located approximately 40 feet and 75 feet, respectively, from the proposed busway driving lane. At this distance and a maximum speed of 65 mph, vibration levels would be at a vibration velocity of approximately 72 VdB at the at the nearest commercial building and 66 VdB at the nearest residence, which would be below the FTA's 75 VdB ground-borne vibration impact level for Land Use Category 3 uses (commercial) and Land Use Category 2 (residential) uses for frequent events. As a result, vibration levels from bus pass-bys associated with the proposed project would not cause structural damage at off-site structures or create human annoyance. See **Appendix 14** for additional information.

c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

No impact. The Monterey Regional Airport is located approximately 1.30 miles south of the project site and the Marina Municipal Airport is located approximately 1.90 miles east of the project site; there are no private airstrips in the project area. The project site lies outside the 65 dBA CNEL noise contour specified in the Monterey Regional Airport Land Use Compatibility Plan Update (May 2018). As a transportation project aircraft noise would have no adverse effects.

4.14 Population and Housing

Iss	IVIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
W	ould the project:				
a)	Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				х
b)	Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?				Х

- a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?
- b) Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?

No impact. The project, a linear busway facility located within TAMC's Monterey Branch Line right-of-way, will not displace people or housing along the alignment that would necessitate the building of housing elsewhere. No relocation or condemnation actions are required. Nor would the project induce substantial unplanned population growth along the alignment. The adopted general plans for the affected land use agencies provide for planned growth within their jurisdictional boundaries. As such, the project would provide needed transit service for the planned population.

4.15 Public Services

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project result in:				
a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:				
i) Fire protection?				Х
ii) Police protection?				Х
iii) Schools?				Х
iv) Parks?				Х
v) Other public facilities?				Х

- a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:
 - i. Fire protection?
 - ii. Police protection?
 - iii. Schools?
 - iv. Parks?
 - v. Other public facilities?

No impact. The busway project is a transportation facility that will not generate new population that would require additional public services such as schools, parks or government facilities. The busway will be maintained by MST and would not require maintenance by Marina, Sand City, Seaside, or Monterey County public works departments. In terms of fire and police protection, the project may provide enhanced vehicle access and/or an emergency access route to better serve the coastline from Marina to Sand City. Given these benefits, and the fact that no new public service facilities would need to be constructed because of the busway project, no impacts would be expected.

4.16 Recreation

Iss	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
W	ould the project:				
a)	Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?			х	
b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?			х	

- a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?
- b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

Less than significant impact. The project would not generate additional population near existing parks and recreational facilities. An increase in people is typically what causes increased use and deterioration of existing facilities. As part of the busway project, there would be associated bicycle and pedestrian improvements that may allow for connections to the region's existing and planned recreational trail facilities, such as Fort Ord Dunes State Park, Fort Ord Regional Trail and Greenway, and the Monterey Bay Coastal Recreation Trail. These connections would allow pedestrians or cyclists to more easily access the recreational areas, but any increase in usage caused by the project would be incidental and less than significant. Operation of the proposed project would increase public access to park and recreational facilities located along the proposed action alignment and would result in a beneficial effect. The project when completed will increase the total length of bicycle/pedestrian facilities over existing conditions. Minor realignment of existing bicycle/pedestrian facilities and new connections will be planned to allow continued use of facilities during construction. The physical effects of constructing the project are addressed throughout this Initial Study.

4.17 Transportation

ENVIRONMENTAL IMPACTS Issues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Conflict with a program plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?				Х
b) Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?				Х
c) Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?			х	
d) Result in inadequate emergency access?				Х

a) Conflict with a program plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?

No impact. One of the primary objectives of the project is to implement associated traffic, bicycle and pedestrian circulation improvements along the local network in conjunction with the dedicated busway. Safe and reliable transit connections along the corridor is consistent with the TAMC, MST, City of Marina, City of Sand City, City of Seaside, and Monterey County's planning documents, including the respective circulation elements of each jurisdiction's general plans. As such, the project will have no significant environmental impacts with respect to program or plan conflicts. See **Appendix 2** for more information.

b) Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?

No impact. CEQA Guidelines Section 15064.3 addresses new requirements for analyzing vehicle miles traveled (VMT). However, SB 743 guidance issued by the Office of Planning and Research (OPR) states that initiation of new transit service would be exempt from new VMT requirements under CEQA. Transit projects would be expected to reduce regional VMT and therefore result in beneficial impacts. See **Appendix 2** for additional information.

c) Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Less than significant impact. The project will introduce SURF! buses along a new route where bus traffic currently does not exist. Along Palm Avenue and Marina Drive in Marina (Segment 1) buses would be traveling at low speeds through this section as they approach and depart the new platforms. Pedestrian crossings of the bus lanes in this location (as well as the crossings at the 5th Street underpass and near the new California Avenue roundabout) have been designed for safety by installing stops and lighting infrastructure, and by placing the crossings in locations where buses are traveling at slow speeds. Gates and other infrastructure have been designed to prevent inadvertent access onto the bus lanes by private vehicles, and the roundabout has been designed to meet standards for bus movements. New signalization at Playa Avenue/California Avenue should also result in better and safer traffic flow compared to the existing stop controls. With these design and safety features, potential impacts are less than significant.

d) Result in inadequate emergency access?

No impact. Where the SURF! route accesses public roadways, the 10-minute headways will have little effect on traffic operations and will not impede emergency access at any location or emergency vehicle movements. Within the TAMC corridor, the project may provide an alternative access for emergency vehicles if Highway 1 is closed or heavily congested.

4.18 Tribal Cultural Resources

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
W	ould the project:				
a)	Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:				
i)	Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?		х		
ii)	A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?		x		

a) Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

i)Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?

ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?

Potentially significant unless mitigation incorporated. Please see Section 4.5 of this Initial Study (Cultural Resources) and **Appendix 8**. While no prehistoric sites have been identified within or near the project alignment (with the exception of one recorded that has not been located by current studies and is assumed to be destroyed), the potential remains to uncover or disturb previously unknown resources during the construction phase of the project. Mitigation measures MM CR-1 and MM CR-2 are in place if such resources are discovered during construction. See **Appendix 8** for additional information.

4.19 Utilities and Service Systems

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Wo	ould the project:				
a)	Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?			Х	
b)	Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?				х
c)	Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?				х
d)	Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?			х	
e)	Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?			Х	

a) Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Less than significant impact. Construction of the project will not require the extension or installation of traditional wet utility systems (water and wastewater) as those services are not essential to busway operations. However, the project will require street/busway/pedestrian lighting (primarily at the Palm/Del Monte bus stop, 5th Street Station and California Avenue Roundabout). As discussed in Appendix 3, restrooms could be desired at the 5th Street Station in the future. Should restrooms be pursued, MST would seek water and wastewater connections from the City of Marina.

Near the Palm/Del Monte location, an existing storm drain outlet discharging onto Marina Drive may be routed to an existing storm drain to avoid potential conflicts with busway/platform construction and to improve localized drainage in this immediate area. No other major existing utility systems or major infrastructure will require relocation to construct the project. The railroad tracks will remain in place.

- b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?
- c) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

No impact. The project will not require a water supply or generate wastewater. As discussed in **Appendix 3**, restrooms could be preferred for the 5th Street Station in the future. Should restrooms be pursued, MST would seek water and wastewater connections from the City of Marina.

- d) Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?
- e) Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

Less than significant impact. The project will result in small amounts of solid construction waste but will not create a permanent waste stream. This temporary and limited amount of construction waste will not exceed standards, local infrastructure, or negatively impact solid waste reduction goals and regulations. The solid waste from construction activities will be properly disposed of according to current law. As discussed above, the busway project is a transit project that will transport people when in operation and would not generate significant amounts of solid waste. Solid waste from operations would be limited to trash receptacles at the stations and stops.

4.20 Wildfire

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
	ocated in or near state responsibility areas or lands project:	classified as ver	ry high fire hazaı	d severity zone	s, would
a)	Substantially impair an adopted emergency response plan or emergency evacuation plan?				Х
b)	Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?				х
c)	Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?				х
d)	Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?				х

- a) Substantially impair an adopted emergency response plan or emergency evacuation plan?
- b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?
- c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

No impact. The busway project is located in an urbanized area and within the disturbed coastal dune environment parallel to Highway 1. The project is not located in a high fire hazard severity zone. With no significant sources of fuel – and the fact that the project will not introduce a permanent population – this issue has been removed from further analysis.

4.21 Mandatory Findings of Significance

	VIRONMENTAL IMPACTS ues	Potentially Significant Issues	Potentially Significant Unless Mitigation Incorporated	Less Than Significant Impact	No Impact
Do	es the project:				
a)	Have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?		X		
b)	Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?			Х	
c)	Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?				х

a) Have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Less than significant impact with mitigation incorporated. As addressed under Biological Resources the project is immediately adjacent to environmentally sensitive habitat areas (ESHA) that include coastal

scrub and dune scrub habitats that occur along the California coastal zone. The project would impact rare and endangered plant species and potentially effect special status animal species during construction. However, the project as designed and mitigated through the federal Section 7 permit process will fully mitigate these species impacts through habitat restoration and other measures.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

Less than significant impact. The project is a busway and bus rapid transit project that is unique in terms of use and geography. The incremental effects as described in this Initial Study are largely site specific and will not combine with the effects of other related projects to create cumulatively considerable effects. Other nearby, related or reasonably foreseeable projects could include the North Fremont Street roadway improvements that have recently been constructed, and the FORTAG regional trail that will be near the project along Canyon Del Rey Boulevard. These projects provide some level of cumulative benefit as they provide opportunities for non-motorized travel, reductions in greenhouse gasses and vehicle miles travelled, and enhanced trail connections. In terms of construction, construction timelines are not concurrent with these projects, limiting the potential to combine to create a cumulatively considerable effect.

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Less than significant impact. As evidenced within this initial study and appendices to the NOE, the project has little potential to cause adverse effects on human beings from environmental concerns such as air quality, noise or exposure to geologic or hazardous materials risks. The nature of the project will not generate a new or permanent population that will be exposed to environmental concerns, will not use or transport hazardous materials, or adversely affect emergency response plans.

5.0 **REPORT PREPARERS**

Lead Agency

Monterey-Salinas Transit

Michelle Overmeyer, Director of Planning and Innovation Lisa Rheinheimer, Assistant General Manager

Responsible Agency

Transportation Agency for Monterey County

Madilyn Jacobsen, Transportation Planner

Consultants

Kimley-Horn and Associates, Inc.

10 Almaden Boulevard, Suite 1250 San Jose, CA 95113

Frederik Venter, P.E., Vice President/Traffic Engineer Tad Stearn, CEQA Project Manager Ace Malisos, Technical Manager Sophia Lai, Environmental Analyst Noemi Wyss, Environmental Analyst

Denise Duffy & Associates

Jami Davis, Senior Environmental Scientist Liz Camilo, Assistant Environmental Scientist Erin Harwayne, Senior Project Manager/Environmental Planner/Scientist

6.0 **REFERENCES**

California Department of Transportation (Caltrans). 1987. California Vehicle Noise Emission Levels.
2002. Transportation Related Earthborne Vibrations.
2013. Technical Noise Supplement to the Traffic Noise Analysis Protocol.
2013. Transportation and Construction Vibration Guidance Manual.
2015. State Scenic Highway Program. Available at: http://www.dot.ca.gov/hq/LandArch/16_livability/scenic_highways/faq.htm, accessed September 14, 2015.
2020. Traffic Noise Analysis Protocol.
California Department of Water Resources. 2020. Water Data Library Station Map. Available at: https://www.waterboards.ca.gov/water_issues/programs/tmdl/2014_16state_ir_reports/category5_report.shtml. Accessed December 12, 2020.
California Air Pollution Control Officers Association (CAPCOA). 2016. California Emissions Estimator Model: User's Guide, Version 2013.2. Available at: http://www.caleemod.com/
January 2008. CEQA and Climate Change: Addressing Climate Change through California Environmental Quality Act (CEQA). Available at: http://opr.ca.gov/docs/june08-ceqa.pdf
CARB (California Air Resources Board). 2008. Climate Change Scoping Plan, Framework for Change, as Approved December 2008, Pursuant to AB32. Available at: http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm
2010a. Current Air Quality Standards. http://www.arb.ca.gov/html/ds.htm .
2010b. iADAM Air Quality Data Statistics. http://www.arb.ca.gov/adam/ .
2007. Resolution 07-19 (July 19) regarding CCR Title 13, Article 4.8, Chapter 9, Section 2449: http://info.sen.ca.gov
2017. California's 2017 Climate Change Scoping Plan. Available at: https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf .
2017. Greenhouse Gas Inventory Data – 2017 Edition. Available at: https://www.arb.ca.gov/cc/inventory/data/data.htm
CAL FIRE (California Department of Forestry and Fire Protection). 2008. Fire and Resource Assessment Program (FRAP) data set: "Fire Perimeters" Metadata version 07_1. http://frap.cdf.ca.gov/data/frapgisdata/download.asp?rec=fire
California Historical Resources Information System (CHRIS) Records Search Results. September 2020.

Cal OES (California Office of Emergency Services). 2020. <i>MyPlan Internet Mapping Tool</i> . Available at: https://www.caloes.ca.gov/cal-oes-divisions/hazard-mitigation/myplan-internet-mapping-tool. Accessed December 22, 2020.
California Water Quality Control Board. 2019. Water Quality Control Plan for the Central Coastal Basin (Basin Plan). Available at: https://www.waterboards.ca.gov/centralcoast/publications_forms/publications/basin_plan/.
2020. Watershed Management Zones and Spatial data Coverages for Monterey County. Available at:
https://www.waterboards.ca.gov/centralcoast/water_issues/programs/stormwater/docs/lid/lid _hydromod_charette_index.html#watershed_mgmt_zones
CDM Smith. Final Project Report for the Monterey Bay Area Feasibility Study of Bus on Shoulder Operations on State Route 1 and the Monterey Branch Line. June 2018.
City of Marina. 1982. Local Coastal Program Volume I Land Use Plan (certified 1982, amended November 2013).
2000. City of Marina General Plan.
2019. Marina Municipal Airport Land Use Compatibility Plan.
2013. City of Marina Local Coastal Program Volume I Land Use Plan. Certified 1982 and Reformatted November 2013.
2013. City of Marina Local Coastal Program Volume II Implementation Plan. Certified 1982 and Reformatted November 2013.
2020. Marina Municipal Code, current through Ordinance 2020-06, passed October 24, 2020.
County of Monterey. 1983. Carmel Area Land Use Plan. Certified 1983, as amended 1995.
2008. Draft Environmental Impact Report for Monterey County 2007 General Plan.
2010. Monterey County General Plan.
2019. Marina Municipal Airport ALCUP.
2019. Monterey Regional Airport Airport Land Use Compatibility Plan.
2019. Monterey Regional Airport ALUCP.
City of Seaside. 2004. Seaside General Plan.
2013. City of Seaside Local Coastal Program Land Use Plan (adopted June 2020).
2020. Seaside Municipal Code, current through Ordinance 1083, passed April 2, 2020.
Cyril M. Harris. 1979. Handbook of Noise Control.
Denise Duffy and Associates. 2019. Draft Supplemental Environmental Impact Report for the Proposed

June 2021 Page 62

Modifications to the Pure Water Monterey Groundwater Replenishment Project.

- ______. 2020. Monterey-Salinas Transit SURF! Busway and Rapid Transit Administrative Draft Biological Resources Report.
- Department of Conservation (DOC). 2015. Fault Activity Map of California. Available at: https://maps.conservation.ca.gov/cgs/fam/. Accessed December 17, 2020.
- ESA. 2018. Final EIR/EIS for the CalAM Monterey Peninsula Water Supply Project.
- Far Western Anthropological Research Group, Inc. Archaeological Survey Report for the Monterey Peninsula Light Rail Transit Project. December 2010. (on file with MST and TAMC)
- Federal Interagency Committee on Noise. 1992. Federal Agency Review of Selected Airport Noise Analysis Issues, August 1992.
- FEMA (Federal Emergency Management Agency). 2019. FIRM Map. Available at: https://msc.fema.gov/portal/search?AddressQuery=pacific%20grove%2C%20ca#searchresultsanchor
- FHWA (Federal Highway Administration). 2017. Noise Fundamentals. Available at: FHWA, Noise Fundamentals, 2017. Available at: https://www.fhwa.dot.gov/environMent/noise/regulations_and_guidance/polguide/polguide02.cfm
- FTA (Federal Transit Administration). 2018. Transit Noise and Vibration Impact Assessment Manual. Available at: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf
- HUD (U.S. Department of Housing and Urban Development). 2009. Noise Guidebook. Available at: https://www.hudexchange.info/resource/313/hud-noise-guidebook/.
- Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: Synthesis Report, the Fourth IPCC Assessment Report. Available at: http://www.ipcc-nggip.iges.or.jp/public/index.html
- _____. 2014. Climate Change 2014: Synthesis Report, the Fifth IPCC Assessment Report. Available at: https://www.ipcc.ch/report/ar5/
- James P. Cowan. 1994. Handbook of Environmental Acoustics.
- JRP Historical Consulting, LLC. Draft Historic Resources Inventory and Evaluation Report for the Monterey Peninsula Light Rail Transit Project. November 2010.
- Kimley-Horn. 2002. MST SURF! Busway and Bus Rapid Transit Project Transportation Impact Analysis, December 2020.
- Kimley-Horn. 15% Design Package for the MST SURF! Bus and Bus Rapid Transit Project. September 2020.
- Kleinfelder. 2010. Geotechnical Evaluation Report for the Monterey Peninsula Light Rail Project.

December 18, 2020.

2010. Preliminary Corridor Environmental Assessment, TAMC Monterey Branch Line.
2010. Phase I Environmental Site Assessment, Fort Ord Transfer Parcels.
2010. Phase I Environmental Site Assessment, 1965 Del Monte Boulevard and Adjacent Lot.
Monterey County Water Resources Agency. 2006. Monterey County Groundwater Management Plan.
Monterey Fire Safe Council. 2016. Monterey County Community Wildfire Protection Plan.
Monterey One Water. Supplemental Environmental Impact report for the Proposed Modifications to the Pure Water Monterey Groundwater Replenishment Project. November 2019.
National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. National Academies Press, Washington D.C.
Natural Resources Conservation Service. Soil Survey of Monterey County, California. Available at: https://websoilsurvey.sc.egov.usda.gov/WssProduct/4yx5fzzjfqacbogftignc040/4yx5fzzjfqacbogftignc040/20191107_18253306636_31_Soil_Map.pdf. Accessed December 17, 2020.
2020. Custom Soil Resource Report for Monterey County, California. Available at: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Accessed December 23, 2020.
Parsons. 2010. Hydrology, Floodplain, Water Quality, and Stormwater Runoff Impact Analysis for the Monterey Peninsula Light Rail Project.
Paleontological Resource Assessment Report for the Monterey Peninsula Light Rail Project.
Pueblo Water Resources. 2013. Summary of Operations Monterey Peninsula ASR Project. Water Year 2012. Prepared for Monterey Peninsula Water Management District.
RWQCB (Central Coast Regional water Quality Control Board). 2019. Central Coast Region-Basin Plan. Available at: https://www.waterboards.ca.gov/centralcoast/publications_forms/publications/basin_plan/docs/2019_basin_plan_r3_complete_webaccess.pdf.
Rincon Consultants. 2020. Final Environmental Impact Report for the Fort Ord Regional Trail and Greenway Project.
Sand City. 1982. Sand City Local Coastal Program (certified 1982).
2002. Sand City General Plan.
Sand City/EMC Planning Group. 2020. Sand City Sustainable Transportation Plan Existing Conditions Report.
State Water Resources Control Board (SWRCB). 2013. Post-Construction Stormwater Management Requirements for Development Projects in the Central Coast Region. Available at: https://www.waterboards.ca.gov/centralcoast/water_issues/programs/stormwater/docs/lid/hydromod_lid_docs/2013_0032_attach1_post_construction_requirements.pdf. Accessed

	2016. 2014 and 2016 California 303(d) List of Water Quality Limited Segments. Available at: https://www.waterboards.ca.gov/water_issues/programs/tmdl/2014_16state_ir_reports/categ ory5_report.shtml.
I	2020. Geotracker - Saucito Land Co. (T0605300034). https://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T0605300034. Accessed on January 8, 2021.
TAMC. N	Monterey Peninsula Light Rail Project EA/EIR (Administrative Draft - on file with MST and TAMC)
1	United States Environmental Protection Agency). 1974. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. Available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/2000L3LN.PDF?Dockey=2000L3LN.PDF.
	1996. Press Release: EPA Takes Final Step in Phaseout of Leaded Gasoline. Available online: http://www2.epa.gov/aboutepa/epa-takes-final-step-phaseout-leaded-gasoline. January 29.
	2013. Policy Assessment for the Review of the Lead National Ambient Air Quality Standards. Available at: http://yosemite.epa.gov/sab/sabproduct.nsf/46963ceebabd621905256cae0053d5c6/ab1476f97f51b242852578b90065bb04!OpenDocument
1	2015. 40 CFR Parts 50, 51, 52, 53 and 58. RIN 2060-AP38. National Ambient Air Quality Standards for Ozone. Available online: http://www3.epa.gov/airquality/ozonepollution/pdfs/20151001fr.pdf .
	April 2018. Overview of Greenhouse Gases. Available at: https://www.epa.gov/ghgemissions/overview-greenhouse-gases
	April 2018. Inventory of U.S. Greenhouse Gas Emissions and Sinks. Available at: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2016
	States Geological Survey (USGS). 2020. Earthquake Hazards Program, National Seismic Hazard Map website. http://earthquake.usgs.gov/hazards/. Accessed December 17, 2020.
2	2016. I. Available at: https://nepassisttool.epa.gov/. Accessed December 23, 2020.
	2020. <i>National Map Viewer</i> . Available at: https://viewer.nationalmap.gov/advanced-viewer/. Accessed September 28, 2020.

California Coastal Commission

COASTAL DEVELOPMENT PERMIT

CDP 3-23-0288 (MST Bus Road)

Permittee: Monterey-Salinas Transit Issue Date: September 18, 2024 Page 1 of 22

Coastal development permit (CDP) number 3-23-0288 was approved by the California Coastal Commission on September 12, 2024. 3-23-0288 allows MST to construct a new 4.2 mile long, 30-foot-wide paved bus road and associated development including drainage infrastructure, retaining walls, a bus stop, pedestrian crossings, and a 700-foot extension of the Monterey Bay Sanctuary Scenic Trail, all located between Highway 1 and Fort Ord Dunes State Park, in the existing rail corridor right-of-way owned by the Transportation Agency for Monterey County (TAMC). CDP 3-23-0288 is subject to certain terms and conditions, including the standard and special conditions beginning on page 2 of this CDP.

As of September 12, 2024, the CDP can be issued. Thus, by my signature below, the CDP is issued on behalf of the California Coastal Commission:

Kevin Kahn

Kevin Kahn, Central Coast District Manager, for Kate Huckelbridge, Executive Director

Acknowledgement

The undersigned Permittees acknowledge receipt of this CDP and agree to abide by all terms and conditions thereof. The undersigned Permittees acknowledge that Government Code Section 818.4 (that states in pertinent part that "a public entity is not liable for injury caused by the issuance of any permit") applies to the issuance of this CDP.

— Docusigned by:

Land Schoryk

9/18/2024

Monterey-Salinas Transit Representative Date

CFO

Please note that this CDP is not valid unless and until a copy of it with the signed acknowledgement has been returned to the California Coastal Commission's Central Coast District Office (14 Cal. Admin. Code Section 13158).

CDP 3-23-0288 (MST Bus Road)

Page 2 of 22

Standard Conditions

- 1. Notice of Receipt and Acknowledgment. The permit is not valid and development shall not commence until a copy of the permit, signed by the Permittee or authorized agent, acknowledging receipt of the permit and acceptance of the terms and conditions, is returned to the Commission office.
- 2. Expiration. If development has not commenced, the permit will expire two years from the date on which the Commission voted on the application. Development shall be pursued in a diligent manner and completed in a reasonable period of time. Application for extension of the permit must be made prior to the expiration date.
- 3. Interpretation. Any questions of intent or interpretation of any condition will be resolved by the Executive Director or the Commission.
- **4. Assignment.** The permit may be assigned to any qualified person, provided assignee files with the Commission an affidavit accepting all terms and conditions of the permit.
- 5. Terms and Conditions Run with the Land. These terms and conditions shall be perpetual, and it is the intention of the Commission and the Permittee to bind all future owners and possessors of the subject property to the terms and conditions.

Special Conditions

- 1. Revised Final Plans. PRIOR TO CONSTRUCTION, the Permittee shall submit two fullsize sets of Revised Final Plans to the Executive Director for review and written approval. The Revised Final Plans shall: be prepared by a licensed professional or professionals (e.g., surveyors, geotechnical engineers, etc.); be based on current professionally surveyed and certified topographic elevations for the entire site; and include a graphic scale. The plans shall be substantially in conformance with the proposed plans (titled "Monterey-Salinas Transit Surf! Busway and Bus Rapid Transit (BRT) Project Monterey County. California" (see Exhibit 3 for representative plan sheets; full plan sheets are located in the project file)) except that they shall be modified to meet the following requirements:
 - a. Bus Road Changes. The bus road (i.e., comprised of two contiguous 12-foot wide travel lanes with 3-foot wide shoulders on each outside edge, for a total paved width of no more than 30 feet) shall be relocated and constructed in the area currently occupied by the ballast and tracks of the Monterey Branch Rail Line (except for the 5th Street Station spur), where it shall be sited and designed such that (1) the road shall limit nonballast area coverage and such coverage shall be limited to the areas inland of the tracks, except for any locations where a more seaward alignment is more protective of coastal resources (e.g., would avoid extensive grading, etc.); (2) the ballast shall be repurposed as part of the road support/base, and all other ballast, track, and related development shall be removed and disposed of pursuant to all applicable requirements; (3) the road shall be able to accommodate light-rail services in the future in both

CDP 3-23-0288 (MST Bus Road)

Page 3 of 22

directions (i.e., one for each travel lane); all to the maximum extent feasible. Retaining walls and all other above-ground development shall be limited to the maximum extent feasible, and only provided when required to ensure necessary safety and structural integrity for the bus road.

- b. Fencing/Barriers. New fencing/barriers shall be prohibited, and existing fencing/barriers in the project area shall be removed, unless the Executive Director allows any such fencing/barriers in any particular locations for public safety or habitat protection purposes, where such fencing/barriers are only allowed provided the Executive Director also determines that any such fencing/barriers: (1) are the minimum necessary to provide for such public safety; and (2) are sited and designed in such a way as to seamlessly blend into the natural environment, to avoid public access degradation, and to minimize incursions into public views, all to the maximum extent feasible. All other fencing/barriers not meeting such parameters shall be prohibited.
- **c. Lighting.** Lighting of any portion of the project area shall be prohibited, unless the Executive Director allows any such lighting in any particular locations for public safety purposes, where such lighting is only allowed provided the Executive Director also determines that any such lighting: (1) is the minimum necessary to provide for such public safety; (2) is directed downward and away from public and natural areas; (3) is shielded from public and natural area view; (4) is wildlife-friendly, and uses lamps that minimize the blue end of the visible spectrum; (5) limits the amount of light or glare visible from both public viewing and natural areas; (6) uses the lowest luminosity possible; (7) does not include blinking or flashing elements; (8) is automatically turned off when not required to be in use; and (9) is sited and designed in such a way as to seamlessly blend into the natural environment, and to minimize incursions into public views, all to the maximum extent feasible.
- **d. Utilities.** All utilities (e.g., electrical conduits) shall be clearly identified (including the manner in which they will connect to offsite distribution networks) and shall be located underground within the bus road footprint, and all existing overhead utilities on the site shall be removed.
- e. Stormwater and Drainage. All stormwater, drainage, and related water quality infrastructure (e.g., pervious pavements, etc.), with preference given to natural BMPs (e.g., bioswales, vegetated filter strips, etc.), shall be clearly identified. Such infrastructure shall provide that all project area stormwater and drainage is filtered and treated to remove expected pollutants prior to discharge and/or direction to offsite areas; shall retain runoff from the project onsite to the maximum extent feasible (e.g., through the use of pervious areas, percolation pits, engineered storm drain systems, etc.); shall be sized and designed to accommodate runoff from the site produced from each and every storm event up to and including the 85th percentile 24-hour runoff event; shall, in extreme storm situations (i.e., greater than the 85th percentile 24-hour runoff event storm) where such runoff cannot be adequately accommodated on-site

CDP 3-23-0288 (MST Bus Road)

Page 4 of 22

through the project's stormwater and drainage infrastructure, ensure that any excess runoff is conveyed off-site in a non-erosive manner; and shall be permanently operated and maintained (where all maintenance parameters for such infrastructure, including based on manufacturers recommendations, shall be provided), where all such operation and maintenance activities shall be documented and shall be provided upon Executive Director request.

- f. Signs. All signs and related project components shall be identified (including details showing their location, materials, design, and text), and all such sign development shall be sited and designed: (1) to limit the number and visibility of all signs; (2) to minimize visibility in public views; (3) to seamlessly integrate into the surrounding environment (e.g., using natural materials, earth tone colors and graphics, etc.); (4) to limit lighting as much as possible (and be consistent with the lighting requirements specified above at a minimum); and (5) to be subordinate to the project setting, all to the maximum extent feasible.
- q. Dune/View Sensitive Design. All publicly visible development shall be sited, designed. colored, screened, and camouflaged (including making maximum use of integrated dune screening and natural landscaping and screening elements) to maximize coastal view protection and minimize visual intrusion, including through use of materials appropriate to the dune context that blend with the natural environment, all to the maximum extent feasible. Hard structural concrete elements, such as retaining walls, shall be faced with a sculpted concrete surface that mimics the natural undulating dune landform in the vicinity in terms of integral mottled color, texture, and undulation to the maximum extent feasible, except that such concrete surfaces may also be covered with local art subject to the Executive Director's review and written approval. The bus road itself (and other new paved areas) shall be colored to match nearby dune landforms. with any pavement markings both limited to that required for safety purposes, and colored to limit their visibility in public views to the maximum extent feasible while ensuring adequate visibility for bus drivers to safely operate on the road. All drainage and related elements within shall be camouflaged so as to be hidden or inconspicuous as seen from public viewing areas, including camouflage of any expected drainage staining over time. The color, texture, and undulations of all such surfaces shall be maintained throughout the life of the approved development, and all such surface and related treatments shall make use of paints, stains, sealants, and any other such materials that are appropriate for and safe for use in the dune environment.
- h. Sand Management Provisions. All provisions that will be applied to manage sand accumulation on the bus road and Scenic Trail extension (including sand management methods, collection and deposition locations, frequency, and expected volumes of sand) shall be clearly identified. Any sandy materials collected shall be, where feasible, allocated to restoration projects in the area, provided that such material does not contain contamination that poses a threat to human or ecological health.

CDP 3-23-0288 (MST Bus Road)

Page 5 of 22

- i. Construction Requirements. All construction plan requirements (see Special Condition 2) shall be identified on the Revised Final Plans.
- j. Archaeological and/or Tribal Cultural Resource Protection. All archaeological and/or tribal cultural resource protection requirements (see Special Condition 8) shall be identified on the Revised Final Plans.
- k. Public Access Areas and Amenities. All public access areas and amenities as identified in the Public Access Management Plan (see Special Condition 3) shall be identified on the Revised Final Plans.

All requirements above and all requirements of the Executive Director-approved Revised Final Plans shall be enforceable components of this CDP. The Permittee shall undertake development in conformance with this condition and the approved Revised Final Plans.

- 2. Construction Plan. PRIOR TO CONSTRUCTION, the Permittee shall submit two copies of a Construction Plan to the Executive Director for review and written approval. The Construction Plan shall, at a minimum, include the following:
 - a. Construction Areas. The Plan shall identify the specific location of all construction areas, all staging areas, and all construction access corridors in site plan view. All such areas within which construction activities and/or staging are to take place shall minimize impacts on public access, including to and along the Monterey Bay Sanctuary Scenic Trail (i.e., Beach Range Road), the Monterey Peninsula Recreational Trail, and other coastal resources including by using inland areas for staging and storing construction equipment and materials, all to the maximum extent feasible. Construction areas shall be sited and designed to minimize impacts to public beach access and public views to the maximum extent feasible.
 - b. Construction Methods. The Plan shall specify the construction methods to be used, including all methods to be used to keep construction areas separated from public use areas and to ensure uninterrupted public use along the Scenic Trail and the Recreational Trail (including through use of unobtrusive fencing and/or other similar measures to delineate construction areas), and including verification that equipment operation and equipment and material storage will not significantly degrade public views during construction, all to the maximum extent feasible. The Plan shall also limit construction activities to avoid coastal resource impacts, including that lighting of the work area is prohibited unless the Executive Director determines that lighting the work area is required to safely carry out construction and measures are applied to ensure maximum coastal resource protection, all to the maximum extent feasible. The Plan shall also identify methods to temporarily re-open public access during any work stoppages (for phasing purposes or otherwise) to the maximum extent feasible.
 - **c.** Construction Timing. The Plan shall include a complete construction schedule, where no work shall occur during weekends and holidays in the peak summer months (i.e.,

CDP 3-23-0288 (MST Bus Road)

Page 6 of 22

from the Saturday of Memorial Day weekend through Labor Day, inclusive) unless, due to extenuating circumstances, the Executive Director authorizes such work.

- **d. Construction BMPs.** The Plan shall identify the type and location of all construction best management practices that will be implemented during construction to protect coastal resources, including at a minimum all of the following:
 - 1. Runoff Protection. Silt fences, straw wattles, and equivalent apparatus shall be installed at the perimeter of the construction site to prevent construction-related runoff and/or sediment from discharging from the construction area, and/or entering into storm drains or otherwise offsite and/or towards into the adjacent dunes. Special attention shall be given to appropriate filtering and treating of all runoff, and all drainage points, including storm drains, shall be equipped with appropriate construction-related containment and treatment equipment. Tarps or similar such devices shall be used to capture debris, dust, oil, grease, rust, dirt, fine particles, and spills.
 - Erosion and Sediment Controls. All erosion and sediment controls shall be in place prior to the commencement of construction as well as at the end of each work day.
 - 3. Equipment. Equipment washing, refueling, and/or servicing shall take place at an appropriate off-site and inland location away from dune habitat on an existing hard surface area (e.g., a road) or an area where collection of materials is facilitated. All construction equipment shall also be inspected and maintained at a similarly sited inland location to prevent leaks and spills of hazardous materials at the project site.
 - 4. Good Housekeeping. The construction site shall maintain good construction housekeeping controls and procedures at all times (e.g., clean up all leaks, drips, and other spills immediately; keep materials covered and out of the rain, including covering exposed piles of soil and wastes; dispose of all wastes properly, place trash receptacles on site for that purpose, and cover open trash receptacles during wet weather; remove all construction debris from the project site; etc.).
 - 5. Construction Vehicles. Construction vehicle types (rubber tired, track, etc.) shall be selected to minimize impacts to sensitive habitats to the maximum extent feasible, with a preference for rubber-tired vehicles where feasible.
 - 6. Construction Material Storage. All construction materials and equipment shall be stored off of dune habitat, except for necessary erosion and sediment controls and/or construction area boundary fencing area allowed where such controls and/or fencing are placed as close to the work area, and are minimized in their extent, both to the maximum extent feasible.

CDP 3-23-0288 (MST Bus Road)

Page 7 of 22

- e. Sand Retention. Any sandy materials exported during the course of construction shall be, where feasible, allocated to restoration projects in the area, provided that such material does not contain contamination that poses a threat to human or ecological health.
- f. Biological Monitoring. The Permittee shall enlist one or more qualified biologists, subject to the Executive Director's approval, to monitor construction activities. The biologist(s) shall possess the authority to halt work to prevent any breach in CDP compliance from occurring, or if any unforeseen sensitive habitat issues arise and until they are satisfied that the issue has been resolved; and shall immediately notify the Executive Director if development activities outside the scope of this CDP occur and document any incidents requiring the stoppage of work. The biologist(s) shall also conduct sensitive species pre-construction surveys and shall monitor the project site during all construction activities per the following:
 - 1. Pre-Construction Surveys. PRIOR TO CONSTRUCTION, the biologist(s) shall conduct surveys (protocol-level, when available) for any sensitive species (including, but not limited to, legless lizard, nesting birds, American badger, Townsend's bigeared bat, and Monterey dusky-footed woodrat) that have been previously documented within the work area and/or an area measured out one half-mile from it, and that could be reasonably expected to be present on the basis of other known factors (e.g., habitat suitability). Surveys shall be conducted no sooner than 14 days before construction of a segment for nesting birds, and no sooner than 30 days before construction of a segment for other sensitive species. Surveys shall be conducted to at least 100 feet beyond the specified work areas, as feasible. The results of these surveys shall be reported to the Executive Director, USFWS, and CDFW. In the event that such surveys identify any sensitive species, the Permittee shall take measures to avoid impact to these species in accordance with the Mitigation Monitoring and Reporting Program, dated June 2021, and follow any necessary consultation with CDFW and/or USFWS.
 - 2. Construction Monitoring. PRIOR TO COMMENCEMENT OF CONSTRUCTION EACH DAY, the biologist(s) shall inspect the active project areas to ensure that the day's activities will not result in impacts to sensitive species, where the results of each daily pre-construction survey shall be documented and made available upon request to appropriate agencies. If special-status species are observed and may be impacted, construction activities may not commence until any sensitive wildlife species have the left the project area and its vicinity and/or any sensitive plant species have been sufficiently protected or salvaged in accordance with the Mitigation and Monitoring Reporting Plan. If impacts or injury occur to sensitive species, the Permittee shall notify the Executive Director, as well as CDFW and/or USFWS as applicable, and will be advised of the appropriate action or mitigation to be taken.

CDP 3-23-0288 (MST Bus Road)

Page 8 of 22

- g. Restoration. All construction debris shall be removed, and all dune area and public recreational access and use areas and all beach access points impacted by construction activities shall be restored to their pre-construction condition or better within three days of completion of construction (unless addressed differently in the Habitat Monitoring and Mitigation Plan (Special Condition 5). Any native materials impacted shall be appropriately filtered as necessary to remove all construction debris.
- h. Construction Site Documents. The Plan shall provide that copies of the signed CDP and the approved Construction Plan be maintained in a conspicuous location at the construction job site at all times, and that such copies are available for public review on request. All persons involved with the construction shall be briefed on the content and meaning of the CDP and the approved Construction Plan, and the public review requirements applicable to them, prior to commencement of construction.
- i. Construction Coordinator. The Plan shall provide that a construction coordinator be designated to be contacted during construction should questions arise regarding the construction (in case of both regular inquiries and emergencies), and that their contact information (i.e., address, phone numbers, email address, etc.) including, at a minimum, a telephone number (with message capabilities) and an email that will be made available 24 hours a day for the duration of construction, is conspicuously posted at the job site where such contact information is readily visible from public viewing areas while still protecting public views as much as possible, along with indication that the construction coordinator should be contacted in the case of questions regarding the construction (in case of both regular inquiries and emergencies). The construction coordinator shall record the contact information (address, email, phone number, etc.) and nature of all complaints received regarding the construction, and shall investigate complaints and take remedial action, if necessary, within 24 hours of receipt of the complaint or inquiry. All complaints and all actions taken in response shall be summarized and provided to the Executive Director on at least a weekly basis during construction.
- j. Construction Specifications. All construction specifications and materials, including construction contracts, shall include appropriate penalty provisions that require appropriate and commensurate remediation for any work done inconsistent with the terms and conditions of this CDP.
- **k. Notification.** The Permittee shall notify planning staff of the Coastal Commission's Central Coast District Office at least three working days in advance of commencement of construction, and immediately upon completion of construction.

All requirements above and all requirements of the Executive Director-approved Construction Plan shall be enforceable components of this CDP. The Permittee shall undertake construction in conformance with this condition and the approved Final Construction Plan.

CDP 3-23-0288 (MST Bus Road)

Page 9 of 22

- 3. Public Access Management Plan. PRIOR TO CONSTRUCTION, the Permittee shall submit two full-size sets of a Public Access Management Plan to the Executive Director for review and written approval. The Plan shall clearly describe the manner in which general public access associated with the approved project is to be provided and managed, with the objective of maximizing public use of all public access areas associated with the proposed development (including the connecting vertical accessways, Fifth Street Station trail connections, Monterey Bay Sanctuary Scenic Trail, Monterey Peninsula Recreational Trail, wayfinding and public access signs, etc.), and improvements/amenities associated with the approved project (i.e., parking areas, restrooms, pathways, overlooks, benches, picnic tables, bicycle racks and lockers, interpretive signage, waste and recycling receptacles, doggie mitt stations, etc.) as described in this special condition and Special Condition 1. All public access improvements/amenities shall be sited and designed to seamlessly integrate into the natural dune setting and to maximize public view protection, including through use of siting/design approaches and materials that are appropriate to the dune context, and including to ensure that the approved development effectively blends into and enhances the natural environment, all to the maximum extent feasible. All public access improvements/amenities are required to be maintained and managed by the Permittee pursuant to the Plan over time. The objective and goal is to also work in conjunction with California State Parks to optimize seamless connections between inland areas and Fort Ord Dunes State Park and Marina State Beach, including facilitating public access along the Scenic and Recreational Trails. The Plan shall at a minimum include and provide for the preceding and the following:
 - a. Clear Depiction of Public Access Areas and Amenities. All public access areas and amenities, including all of the areas and amenities described above and below, shall be clearly identified as such on the Plan (including with hatching and closed polygons so that it is clear what areas are available for public access use). The public access areas shall, at a minimum, and in addition to the Scenic Trail/Beach Range Road extension, include connections from inland locations to the Recreational and Scenic Trails at least at: (1) the upcoast end of the project nearest Marina; (2) the 5th Street Station; (3) the southern end of the Scenic Trail/Beach Range Road extension; and (4) the Recreational Trail along the southbound Highway 1 onramp at California Avenue, where all such connections shall ensure safe and convenient public access from east to west. In the event that any future improvements to Imjin Parkway include enhanced bicycle and pedestrian infrastructure, the Permittee shall work with that project proponent to ensure that such project also connects such infrastructure to the Recreational and Scenic Trails, including if such a connection requires new bike lanes and/or sidewalks over the Imjin Parkway bridge over Highway 1. The public access amenities shall, at a minimum, include (1) an additional bus stop seaward of Highway 1 sited to provided convenient pedestrian/bicycle access to the future Fort Ord Dunes State Park Campground, along with any additional trails necessary to connect the new stop to the campground trail

¹ Unless the Recreational Trail is restored to dune habitat, as is allowed under this approval.

CDP 3-23-0288 (MST Bus Road)

Page 10 of 22

system; (2) public access amenities deemed appropriate by the Executive Director, such as overlook areas, benches, picnic tables, bicycle racks/lockers, interpretive signage, waste and recycling receptacles, doggie mitt stations, low profile fencing in appropriate locations on the Recreational and Scenic Trails, and/or related public amenities near connection points, all commensurate with expected public use; and (3) signage (see below). All public access amenities on State Park property or connecting to State Park property shall be sited and designed in collaboration with State Parks, and shall reflect State Parks approval of them.

- **b. Public Access Signs/Materials.** The Plan shall identify all signs, handouts, brochures, and any other project elements that will be used to facilitate, manage, and provide public access associated with the approved project, including identification of all public education/interpretation features that will be provided on the site (educational displays, interpretive signage, etc.). All materials shall include English and non-English languages (including but not limited to Spanish), tailored to be culturally relevant, and written in plain language to prevent educational and cultural barriers to public access. Sign details showing the location, materials, design, and text of all public access signs (including the public access use hours described in Special Condition 4(d)) shall be provided. At a minimum, public access and wayfinding signs shall be placed at all public access areas and amenities listed above. The signs shall be designed so as to provide clear information without impacting public views and site character. All directional signs shall include the Commission's access program "feet" logo and the California Coastal Trail emblem. Public access interpretive signage (appropriate to Monterey Bay/Fort Ord Dunes issues, information, and/or history) shall be located at appropriate locations, as determined by the Executive Director, along each accessway to the Recreational and Scenic Trails.
- c. No Public Access Disruption. Development and uses within the public access areas that disrupt and/or degrade public access (including areas set aside for private uses, barriers to public access (planters, temporary structures, private use signs, ropes, etc.)) shall be prohibited. The public use areas shall be maintained in a manner that maximizes public use and enjoyment.
- **d. Public Access Parameters.** The public access areas and amenities shall be open to the general public 24 hours per day and shall be available free of charge.
- e. Public Access Amenities Provided Prior to Use. All public access components of the approved project shall be constructed and ready for use prior to use of the bus road.
- f. Public Access Areas and Amenities Maintained. The public access components of the project shall be maintained by the Permittee in their approved state in perpetuity. Prior to any modification, movement, or replacement of such access improvements, the Permittee shall obtain CDP authorization for such development, unless the Executive Director determines that such authorization is not legally necessary.

CDP 3-23-0288 (MST Bus Road)

Page 11 of 22

All requirements above and all requirements of the Executive Director-approved Public Access Management Plan shall be enforceable components of this CDP. The Permittee shall undertake public access development and management in conformance with this condition and the approved Public Access Management Plan.

- **4.** Habitat Impact Validation and Compensatory Mitigation. Habitat impacts shall be validated and mitigated as follows:
 - a. Post-Construction Impact Validation. WITHIN 90 DAYS OF COMPLETION OF CONSTRUCTION, the Permittee shall ensure that initial post-construction surveys are completed. For each habitat, post-construction surveys shall document, at a minimum: the physical extent and acreage of all impacted habitats, and the activities that occurred within the area, including any vegetation clearance, mortality, or other significant reduction in vegetation cover due to project activities (e.g., pruning), or ground disturbance. For impacts anticipated to be potentially characterized as temporary, surveys shall also document, at a minimum: the dates of initial and final project-related disturbance to the habitat; each vegetation community's native species diversity, native species cover, invasive species cover, and the relative cover of dominant native vegetation species; the vegetation community's age classes and/or size structure distributions; and, photos from the designated points used for pre-construction surveys, to support impact evaluations.
 - 1. Final Short-term Temporary Impact Validation. WITHIN TWELVE MONTHS OF INITITATION OF CONSTRUCTION, the Permittee shall conduct a survey that validates areas (physical extents and acreages) initially characterized as short-term temporary impacts by comparison with the baseline condition for each vegetation community, including native species diversity, native species cover, the relative cover of dominant native vegetation species, and the vegetation community's age classes and/or size structure distributions. Invasive species cover shall also be described. The survey shall be detailed in a report, to be submitted by the Permittee within 30 days of final survey completion, for Executive Director review and approval. If the survey demonstrates impacts persist or any revegetation effort has been unsuccessful, in part or in whole, any remaining impacts are, by definition, permanent. Digital copies of the survey data and associated metadata shall be provided with the reports.
 - 2. Final Long-term Temporary Impact Validation and Report. WITHIN TWELVE MONTHS OF THE COMPLETION OF CONSTRUCTION, the Permittee shall conduct a survey that validates areas (physical extents and acreages) initially characterized as long-term temporary impacts using the same comparisons outlined in (1) and shall be detailed in a report, to be submitted by the Permittee within 30 days of final survey completion, for Executive Director review and approval. If the survey demonstrates impacts persist or any revegetation effort has been unsuccessful, in part or in whole, any remaining impacts are, by definition,

CDP 3-23-0288 (MST Bus Road)

Page 12 of 22

permanent, and shall be mitigated accordingly. Digital copies of the survey data and associated metadata shall be provided with the reports.

A final report comparing the extent and nature of impacts as estimated by the Permittee in the submitted material with those actually observed following construction shall be submitted for Executive Director review and written approval. The observed impacts, once approved, shall form the basis of the compensatory habitat mitigation obligation. If the observed impacts are at least 15% greater than what was assessed as part of the approval final plans and the Commission's authorization, a CDP amendment shall be required to address the discrepancy, unless determined unnecessary by the Executive Director. Any such differences between estimated and observed impacts shall require revision or supplement to the Habitat Mitigation and Monitoring Plan pursuant to Special Condition 6.

- b. Temporary Impact Mitigation. Short-term temporary habitat impacts are those that are fully restored within 12 months of initial construction activity disturbance, and long-term temporary habitat impacts are those that may occur for up to a 24-month period from the initial disturbance but require no more than 12 months following the conclusion of construction activity to fully recover. Any habitat impacts that do not meet these timing parameters; that significantly disturb the ground (e.g., trenching); and/or that fail to recover vegetation communities to equal or better condition in terms of native diversity, native species cover, the relative cover of dominant native vegetation species, and vegetation community age classes and/or size structure distributions, shall be considered permanent habitat impacts and shall require mitigation attributable to such permanent impacts. Any habitat impacts determined to qualify as temporary shall be mitigated for at a minimum ratio of 1:1 (short-term) or 1.5:1 (long-term).
- c. Permanent Impact Mitigation. All impacts failing to qualify as temporary for any of the above cited reasons shall be recognized as permanent and mitigated for at a minimum ratio of 3:1, where this base ratio assumes compensation as habitat creation or substantial restoration. Alternatively, enhancement or preservation strategies may be proposed at no less than double or triple the base ratio, respectively. Except for the area presently occupied by ballast, no net loss of dune habitat(s) shall be assured by provision of a minimum ratio of 1:1 as habitat creation for the total acreage where permanent development will be located (see Special Condition 5). Any remaining balance following creation may be addressed through the various mitigation strategies, with adjustments to the discounted ratio, as described above (e.g., 2:1 may be satisfied via creation or substantial restoration, or as 4:1 via enhancement, or as 6:1 via preservation).
- d. Mitigation Areas Protection. WITHIN 90 DAYS OF COMPLETION OF CONSTRUCTION, the Permittee shall submit to the Executive Director for review and written approval documentation demonstrating that all habitat mitigation areas intended to compensate for permanent impacts as well as the 0.5:1 fraction for long-term

CDP 3-23-0288 (MST Bus Road)

Page 13 of 22

temporary impacts that would not be addressed in place, are covered by deed restrictions, easements (or offers of easements), or equivalent, that require preservation of such habitat areas for habitat purposes only in perpetuity, and that prohibit development (as defined in Coastal Act Section 30106) except for development generally interpreted as compatible with habitat purposes (e.g., restoration activities, nature study, and low impact recreation). Any deed restrictions, easements/offers, and/or other provisions recorded to satisfy this requirement: (1) shall be recorded free of prior liens and any other encumbrances that the Executive Director determines may affect the interest being conveyed; (2) shall include formal legal descriptions of the entirety of the parcels involved; (3) shall include a metes and bounds legal description and graphic depiction, prepared by a licensed surveyor based on an on-site inspection, drawn to scale and approved by the Executive Director, of the mitigation areas; (4) shall run with the land, binding successors, and assigns of the property owner; (5) shall indicate that the restrictions on the use of the land shall be in effect upon recording and remain as covenants, conditions, and restrictions running with the land in perpetuity; and (6) for easements/offers, shall provide that acceptance is limited to public entities including State Parks or another land management entity, approved by the Executive Director.

- e. Mitigation Deadlines. If habitat mitigation has not been implemented pursuant to an approved Habitat Mitigation and Monitoring Plan (see Special Condition 5) within five years of construction commencement, the required mitigation ratios shall be increased by 0.5 acre for each portion of a year beyond five years (e.g., for mitigation starting at 3:1, the obligation becomes 3.5:1 if the 5-year time frame is exceeded, 4:1 after 6 years, etc.). The Executive Director may extend the habitat mitigation deadlines if they determine that the Permittee has been diligently pursuing habitat mitigation requirements, and that the Permittee has demonstrated good cause for any identified delays, or apply a lesser rate of increase if the Permittee can demonstrate diligent pursuit of mitigation implementation but has been delayed by matters outside of Permittee control (e.g., litigation complications, etc.).
- 5. Habitat Mitigation and Monitoring Plan. NO LATER THAN ONE YEAR FOLLOWING CDP APPROVAL (i.e., SEPTEMBER 12, 2025), the Permittee shall submit a Habitat Mitigation and Monitoring Plan (HMMP) to the Executive Director for review and written approval. An extension for the submittal of the HMMP may be granted by the Executive Director for good cause. The Plan shall be prepared by a qualified resource specialist approved by the Executive Director and shall provide for habitat mitigation and monitoring as described herein. All such habitat mitigation shall be located within the Monterey Bay Dunes Complex within the Coastal Zone at locations where such mitigation areas can be protected in perpetuity, unless no feasible option is available and/or areas further away are determined by the Executive Director to provide more significant dune habitat benefits to the region. The HMMP shall, at a minimum, include the following components:

CDP 3-23-0288 (MST Bus Road)

Page 14 of 22

- a. Introduction. Description of the HMMP purpose including an overview of the proposed project associated with the HMMP; a summary of impacts for which the HMMP is intended to mitigate; identification of the general mitigation strategies to be used; the proposed mitigation locations; and the mitigation areas intended to compensate for each affected resource.
- b. Goals and Objectives. Statement of mitigation goals, including the desired habitat types, major vegetation components, and sensitive species and wildlife support functions; description of the desired habitat with rationale, to be based on a high-functioning reference site where feasible and alternatively, derived from literature describing either the site's historic conditions or "typical" regional habitat conditions; specific, actionable objectives to support stated goals; and a detailed timeline laying out all major activities including any outstanding preliminary work such as surveys, site preparation, mitigation implementation including revegetation activities, interim and final monitoring periods, etc.
- c. Compensatory Mitigation Strategies. Compensatory mitigation requirements shall be satisfied by habitat creation, restoration, enhancement, and/or preservation as described below, and pursuant to the mitigation ratios and protections described in Special Condition 4:
 - 1. Habitat Creation. Habitat creation applies to lands that are developed or subject to identifiable development threats but that could appropriately support self-sustaining dune-associated habitat following habitat restoration activities. Such lands may include singular or multiple sites, and/or sites of variable habitat condition. In all cases, such sites shall be removed from future development threats and functions and values shall be fully restored to qualify as habitat creation.
 - 2. Habitat Restoration. Habitat restoration applies to lands that presently support degraded dune-associated habitats where any physical, chemical, and biological stressors would be actively addressed in order to return a full suite of self-sustaining ecological functions and values to the area. This may involve intensive techniques such as manipulating landforms to restore natural processes, and/or eradicating large expanses of non-native species followed by revegetation with a robust palette of natives to restore a high-functioning natural condition.
 - 3. Habitat Enhancement. Habitat enhancement applies to lands that presently support degraded dune-associated habitats where only limited interventions are necessary to reach a high-functioning natural condition that supports self-sustaining ecological functions and values. Such interventions may include weeding of patchy invasive vegetation, limited revegetation efforts, or installation of features to benefit target wildlife.
 - 4. Habitat Preservation. Habitat preservation applies to lands that do or reasonably could support dune-associated ecological functions and values, and that are placed

CDP 3-23-0288 (MST Bus Road)

Page 15 of 22

under some form of permanent protection but their condition is not actively improved.

- 5. Habitat Land/Landowner Requirements/Limitations. Land already obligated by other requirements, including but not limited to prior Coastal Commission decisions, legal obligations, and Habitat Conservation Plans, shall not be considered available for compensatory mitigation unless the work would demonstrably exceed those existing requirements as determined by the Executive Director, in which case only that exceedance shall so qualify. Applicable landowners shall be included in all discussions concerning potential mitigation (including related to site restoration priorities, goals and objectives, methods, cost, maintenance, etc.), and any agreements between the Permittee and landowners shall be subject to Executive Director review and written approval to ensure that all terms are consistent with the terms and conditions of this CDP.
- **d. Design Plans and Construction Methods.** Specification of final mitigation site design and construction methods consistent with identified goals and objectives, including but not limited to:
 - Mitigation Design. Detailed plans showing final topography, vegetation, and any other significant features characteristic of the intended habitat; and how these connect to the surrounding environment.
 - 2. Site Preparation. Methods and plans for salvage of any plant and/or seed material (including collection from impact areas, storage, relocation, and/or reestablishment); salvage of any topsoils to be stock-piled and reused in the mitigation area; any demolition, debris removal, grading, decompaction, soil amendment, or other substrate-affecting activities; erosion control measures; and treatment of invasive species.
 - **3. BMPs.** Detailed list of all BMPs that will be implemented as part of project implementation, including triggers for further or remedial action.
 - **4. Revegetation Plans.** Details on plant palettes; stocks and seed mixes; material sourcing including verification of local and genetically appropriate nature; any proposed irrigation including rationale, method, and schedule; and provisions for removal of any temporary infrastructure following plant establishment.
- e. Invasive Species Control. Provision for continued control of all California Invasive Plant Council-listed species at a specified cover threshold within the project footprint and mitigation areas, including a description of monitoring and control methods. If any herbicide is proposed for potential use, rationale for why it would constitute the least environmentally damaging alternative and detail on the specific products that would be used, including its certification by the California Department of Pesticide Regulation and

CDP 3-23-0288 (MST Bus Road)

Page 16 of 22

allowance for the intended application, and detail on how it would be used to minimize adverse effects (e.g., thresholds for and frequencies of treatment).

- f. Local Plant Species. All revegetation shall include, at a minimum, replanting with locally and genetically appropriate native plant species for the Monterey Bay Dune Complex, where documentation of all plant material sources shall be provided.
- g. Monitoring Plan. Detailed plan for quantitatively monitoring the condition and progress of the mitigation site(s) during both the initial mitigation phase as well as over the long-term at reduced frequency and intensity; performance relative to set criteria, as informed by robust sampling and statistics; triggers for adaptive management action; and reporting. Specifically:
 - 1. Monitoring Frequency. During the initial phase of no less than five years or three years following cessation of all remedial measures except weeding, whichever is longer, quantitative monitoring at least once per year during the period of rapid plant growth and flowering, generally in spring or early summer, unless a clear rationale for otherwise is fully presented. Following the determination that final success criteria have been met, long-term monitoring to inform maintenance and adaptive management shall occur at a frequency of no less than five years.
 - 2. Success Criteria. Final success criteria supported by interim criteria, the latter of which are intended to serve as benchmarks and guide adaptive management, whereas the former will enable measure of mitigation success. Criteria shall have a clear empirical basis (i.e. reference sites and/or published technical literature appropriate for the local area) and generally include representativeness of target vegetation communities (e.g., species composition, cover, structure, diversity, and presence of major structure-producing and habitat-defining species); physical parameters such as topography, bare substrate, and hydrology; and target wildlife support functions or usage. Criteria may be fixed values where there is a strong empirical basis, but, where feasible, should be relative to high-functioning reference sites in order to account for environmental variability. Reference sites shall be located within the Monterey Bay Dunes Complex; shall be similar to the mitigation site with regard to soil type, aspect, slope, and other relevant abiotic characteristics: and shall be identified, sampled, and quantitatively described as a component of the monitoring plan. Invasive species ranked by the California Invasive Plant Council as "high" shall not exceed a total of 1% cover, and all ranked invasives shall not exceed a total of 5% cover.
 - 3. Performance Assessment. Methods for judging mitigation success shall include supporting rationale for their selection and be specified in terms of the types of comparison, including whether relative to fixed criteria or reference sites; identification of any reference sites that will be used; tests of similarity; specification of the maximum allowable difference or effect size between the mitigation value and

CDP 3-23-0288 (MST Bus Road)

Page 17 of 22

the reference value for each success criterion; and where statistical tests will be employed, statistical power analyses to document that the planned sample sizes will provide adequate power to detect maximum allowable differences (for such a test, alpha must equal beta; these values are typically 0.10 or 0.20, depending on the expected natural variability of the variables of interest).

- 4. Sampling Design. The field sampling program shall be designed in conjunction with the success criteria and selected methods of assessment. The sampling design and methods shall provide sufficient detail to enable an independent scientist to duplicate them, including a description of the randomized placement of sampling units, sampling unit size, planned number of samples, etc.
- h. Reporting. All reports shall be prepared by a qualified restoration specialist and submitted to the Executive Director for review and written approval. All such reports shall include raw data and associated metadata in digital format. Required reports include the following:
 - 1. As-Built Report. No more than 60 days following completion of mitigation site construction and revegetation activities, an as-built report summarizing mitigation activities to-date, a description of consistency with approved plans, documentation of acreage treated, maps and descriptions any temporary infrastructure installed, photos taken from fixed points, and a description of consistency with all terms and conditions.
 - 2. Annual Reports. Beginning the year after the mitigation project has been installed, annual monitoring reports shall be due by December 31st of each year, including photos taken from fixed points; assessment relative to interim success criteria; a work plan for the subsequent year; and specific recommendations to adaptively manage the effort and facilitate mitigation success. Once a monitoring report is approved by the Executive Director, recommendations identified in the report shall become prescriptive unless otherwise advised in writing. Reports shall also summarize results, document any management actions that have been taken on the mitigation site, and any recommendations for management action going forward.
 - 3. Final Annual Report. A final monitoring report shall be submitted at the conclusion of all mitigation efforts (no sooner than five years following mitigation implementation years, and for at least three years following the conclusion of all remediation and maintenance activities other than weeding, whichever is later) which shall summarize all prior reports; provide a detailed timeline of the overall progress and success; and include sufficient detail to evaluate comprehensive mitigation compliance with the specified goals, objectives, and success criteria set forth in the approved HMMP. If the final report indicates that the mitigation effort has been unsuccessful, in part or in whole, based on the approved final success criteria, the Permittee shall submit within 90 days a revised/supplemental HMMP to compensate

CDP 3-23-0288 (MST Bus Road)

Page 18 of 22

for those portions of the original program which did not meet the approved success criteria. The revised/supplemental HMMP shall be prepared by a qualified restoration specialist approved by the Executive Director and shall specify measures to remediate those portions of the original approved HMMP that have failed or have not been implemented in conformance with the original approved HMMP. These measures, and any subsequent measures necessary to carry out the approved revised or supplemental HMMP, shall be carried out in coordination with the direction of the Executive Director until the approved revised or supplemental HMMP is established to the Executive Director's satisfaction. If the Executive Director determines that an amendment to the original CDP is necessary to implement the revised/supplemental HMMP, then the Permittee shall submit a complete CDP amendment application immediately to do so.

All requirements above and all requirements of the Executive Director-approved Habitat Mitigation and Monitoring Plan shall be enforceable components of this CDP. The Permittee shall undertake development in conformance with this condition and the approved Habitat Mitigation and Monitoring Plan.

6. Bus Road Use Plan. PRIOR TO COMMENCEMENT OF BUS TRANSIT OPERATIONS, the Permittee shall submit two copies of a Bus Road Use Plan to the Executive Director for review and written approval. The Plan shall provide that: (a) any substantial changes to the proposed use of the bus road (i.e., bus transit operations between the hours of 6 am and 10 pm on weekdays, and 7:30 am and 8:30 pm on weekends and holidays, and at 15 minute headways), such as for special events and other special circumstances, shall be accommodated in a manner that protects coastal resources to the maximum extent feasible; (b) all buses used for such bus transit shall be zero emission buses, where documentation shall be provided demonstrating as much (e.g., manufacturer's spec sheets, etc.), except that temporary short-term use of non-zero emission buses is allowed if zeroemission buses are unavailable due to maintenance or other operational issues; and (c) if the bus road ceases to be used in the way authorized by this CDP for a period that exceeds 6 months, then the Permittee shall provide either (1) a plan that reestablishes public transit uses on the bus road; or (2) a plan to remove the bus road and all related development and appropriately restore the affected area to natural conditions, where such plans shall be designed to achieve plan objectives with the least amount of coastal resource impacts, and shall be subject to Executive Director review and written approval. The Bus Road Use Plan shall also specify all measures to maximize the bus's ridership to facilitate transportation and coastal access opportunities, including financial incentives for ridership (e.g., free passes, reduced fares, etc.), culturally-appropriate outreach methods that may include digital, paper, and other media (and translated into non-English languages, particularly Spanish, and written in plain language), identifying the bus's coastal access opportunities including as identified in the Public Access Management Plan, and any other means to facilitate coastal access for underserved/inland populations. The Plan may include partnerships with local organizations that help underserved communities access the coast, and shall be designed in order to facilitate such access. Every 2 years

CDP 3-23-0288 (MST Bus Road)

Page 19 of 22

after commencement of bus road operations, the Permittee shall provide a report to the Executive Director documenting bus road usage trends and identify ways to increase ridership and coastal access. Use of the bus road for anything other than bus and/or rail public transit shall be prohibited. All requirements above and all requirements of the Executive Director-approved Bus Road Use Plan shall be enforceable components of this CDP. The Permittee shall undertake bus transit operations in conformance with this condition and the approved Bus Road Use Plan.

- 7. Dune Resiliency Plan. WITHIN FIVE YEARS OF THE DATE OF THE APPROVAL OF THIS CDP (i.e., no later than September 12, 2029), the Permittee shall submit two copies of a Dune Resiliency Plan (Plan) to the Executive Director for review and approval. The Plan shall establish the framework and parameters for: (1) monitoring dune erosion and other coastal hazards at the site and nearby off-site area and management responses to those hazards and resources both on- and off-site; (2) identifying how those hazards are affecting the operations of the bus road; (3) identifying changes necessary to allow continued appropriate and required functioning of the bus road in light of coastal hazard concerns/requirements; and (4) identifying 'triggers' to establish when actions (such as additional dune restoration and potential bus road relocation, but not including any form of shoreline armoring) need to be pursued. Upon Executive Director approval of the Resiliency Plan, the Permittee shall submit a monitoring report detailing the condition and plan for the bus roadway in relation to the triggers specified in the Dune Resiliency Plan every 5 years, or following coastal hazard events that necessitate an interruption of bus service within the project footprint, whichever occurs first. Each such report shall include and describe changes since the prior report, as well as cumulatively describing changes over time. Extension to the five year deadline for submittal of the Dune Resiliency Plan may be granted by the Executive Director for good cause.
- **8.** Archaeological and/or Tribal Cultural Resource Protection. The Permittee shall undertake the approved project in compliance with the following measures to protect archaeological and/or tribal cultural resources to the maximum extent feasible:
 - a. Notification. At least one month prior to commencement of any ground-disturbing construction activities, the Permittee shall: (1) notify the representatives of Native American Tribes listed on an updated Native American Heritage Commission (NAHC) contact list; (2) invite all Tribal representatives on that list to be present and to monitor ground-disturbing activities; and (3) arrange for any invited Tribal representative that requests to monitor and/or a qualified archaeological monitor to be present to observe project activities with the potential to impact archaeological and/or tribal cultural resources.
 - **b. Monitoring.** A qualified, locally experienced archaeologist and a tribal monitor, approved by relevant tribes shall be on site to monitor all activities with the potential to impact archaeological and/or tribal cultural resources, including all ground disturbing activities. The monitors shall have experience monitoring for archaeological resources

CDP 3-23-0288 (MST Bus Road)

Page 20 of 22

of the local area during excavation projects, be competent to identify significant resource types, and be aware of recommended tribal procedures for the inadvertent discovery of tribal cultural and/or archaeological resources and/or human remains.

- c. Discovery Protocol. If any tribal cultural deposits are discovered during the course of the project, all construction within 200 feet of such deposits shall cease and shall not recommence until a qualified cultural resource specialist (which could be a persons identified in subpart (b), above), in consultation with the relevant tribes, analyzes the significance of the find and, if deemed significant, prepares a supplementary archaeological plan for the review and approval of the Executive Director that evaluates and provides suggested measures related to the discovery. The Executive Director shall review the plan and either: (1) approve it and determine that its recommended changes to the project or mitigation measures do not necessitate an amendment to this CDP, or (2) determine that the changes proposed therein necessitate a CDP amendment. The location of any and all identified archaeological and tribal cultural resources shall be kept confidential, and only those with a "need to know" shall be informed of their locations.
- d. Human Remains. Should human remains be discovered on-site during the course of the project, immediately after such discovery, the on-site archaeologist and/or tribal monitor shall notify the Monterey County Coroner within 24 hours of such discovery, and all construction activities shall be temporarily halted until the remains can be identified. If the County Coroner determines that the human remains are those of a Native American, the Coroner shall contact the NAHC within 24 hours, pursuant to Health and Safety Code Section 7050.5. The NAHC shall deem the Native American most likely descendant (MLD) to be invited to participate in the identification process pursuant to Public Resources Code Section 5097.98. The Permittee shall comply with the requirements of Section 5097.98 and work with the MLD person(s) to discuss and confer with the descendants all reasonable options regarding the descendants' preference for treatment. Within five (5) calendar days of notification to NAHC, the Permittee shall notify the Coastal Commission's Executive Director of the discovery of human remains. The Executive Director shall maintain confidentiality regarding the presence of human remains on the project site.
- 9. Future Permitting. Any and all future proposed development related to this project, this project area, and/or this CDP shall be subject to the Coastal Commission's continuing CDP jurisdiction. This CDP authorizes limited future repair, maintenance, and/or improvement development that is determined by the Executive Director to: 1) fall within the overall scope and intent of this CDP; and 2) not have any significant adverse impacts to coastal resources. Any development that the Executive Director determines does not meet such criteria shall require a separate CDP or a CDP amendment, as directed by the Executive Director.

CDP 3-23-0288 (MST Bus Road)

Page 21 of 22

- 10. Public Rights. By acceptance of this CDP, the Permittee acknowledges and agrees, on behalf of itself and all successors and assigns, that the Coastal Commission's approval of this CDP shall not constitute a waiver of any public rights that may exist on the affected property, and that the Permittee shall not use this CDP as evidence of a waiver of any public rights that may exist now or in the future.
- 11.Other Agency Approvals. PRIOR TO CONSTRUCTION, the Permittee shall provide to the Executive Director copies of all other permits, permissions, or other authorizations from the Transportation Agency for Monterey County, California State Parks, California Transportation Commission, California Public Utilities Commission, California Department of Transportation, California Department of Fish and Wildlife, and United States Fish and Wildlife Service, or evidence that no permits, permissions, or other authorizations from these agencies are required. The Permittee shall inform the Executive Director of any changes to the Commission-approved project required by other agencies. Such changes shall not be incorporated into the project until the Permittee obtains a Commission amendment to this CDP, unless the Executive Director issues a written determination that no amendment is legally required.
- **12. Minor Changes.** The Permittee shall undertake development in conformance with the terms and conditions of this CDP, including with respect to all Executive Director-approved plans and other materials, which shall also be enforceable components of this CDP. Any proposed project changes, including in terms of changes to identified requirements in each condition, shall either (a) require a CDP amendment, or (b) if the Executive Director determines that no amendment is legally required, then such changes may be allowed by the Executive Director if the Executive Director determines that such changes: (1) are deemed reasonable and necessary; and (2) do not adversely impact coastal resources.
- 13. Assumption of Risk, Waiver of Liability and Indemnity. By acceptance of this CDP, the Permittee acknowledges and agrees, on behalf of itself and all successors and assigns: (a) that the project area may be subject to coastal hazard risks at some point during the permitted development's lifetime, including but not limited to episodic and long-term shoreline retreat and coastal erosion, high seas, ocean waves, tidal scour, storms, tsunami, coastal flooding, sea level rise, landslides, earth movement, geologic instability, and the interaction of same, many of which will worsen with future sea level rise; (b) to assume all risks, including coastal hazard risks, to the Permittee and the property that is the subject of this CDP of injury and damage from such risks in connection with the permitted development; (c) to unconditionally waive any claim of damage or liability against the Commission, its officers, agents, and employees for injury or damage from such risks; (d) to indemnify and hold harmless the Commission, its officers, agents, and employees with respect to the Commission's approval of this project against any and all liability, claims, demands, damages, costs (including costs and fees incurred in defense of such claims due to hazard or other risks), expenses, and amounts paid in settlement arising from any injury or damage; (e) that any adverse effects to properties caused by the permitted development shall be fully the responsibility of the Permittee; (f) to prohibit shoreline armoring (including

CDP 3-23-0288 (MST Bus Road)

Page 22 of 22

but not limited to seawalls, revetments, retaining walls, gabion baskets, tie backs, piers, groins, caissons/grade beam systems, etc.) to protect any portion of the permitted development; (g) to waive any rights to construct shoreline armoring that may exist under Coastal Act Section 30235 and/or certified LCPs for the City of Marina, the City of Sand City, and Monterey County, or any other applicable laws; and (h) that no portion of the permitted development qualifies as an "existing structure" for purposes of Section 30235 and the above-listed LCPs.

14. Liability for Costs and Attorneys' Fees. The Permittee shall reimburse the Coastal Commission in full for all Coastal Commission costs and attorneys' fees (including but not limited to such costs/fees that are: (1) charged by the Office of the Attorney General; and/or (2) required by a court) that the Coastal Commission incurs in connection with the defense of any action brought by a party other than the Permittee against the Coastal Commission, its officers, employees, agents, successors and/or assigns challenging the approval or issuance of this CDP, the interpretation and/or enforcement of CDP terms and conditions, or any other matter related to this CDP. The Permittee shall reimburse the Coastal Commission within 60 days of being informed by the Executive Director of the amount of such costs/fees. The Coastal Commission retains complete authority to conduct and direct the defense of any such action against the Coastal Commission, its officers, employees, agents, successors and/or assigns.