Trade Corridor Enhancement Program Cycle 3 Guidelines Development Workshop

Wednesday, February 16, 2022

Agenda

- CEQA/NEPA Follow-up
- Performance Metrics Guidebook Overview
- Walkthrough of Metrics in the Guidebook

CEQA/NEPA Follow-up

Guidelines Language

12. California Environmental Quality Act (CEQA) Requirements and National Environmental Policy Act

Design, right of way, and construction capital costs will only be programmed if the project has completed a project level environmental process in accordance with the California Environmental Quality Act (CEQA), within six months of program adoption.

If the project requires National Environmental Policy Act (NEPA) compliance, then design, right of way, and construction capital costs will only be programmed if the project has completed a project level environmental process in accordance with the NEPA, within six months of program adoption.

If these requirements are not met, the project will be deleted from the program.

Guidebook Overview

Guidebook Development Process

- Workgroup process.
- 14 meetings over 7 months.
- About 45 experts from Caltrans and regional agencies.
- Subject matter experts reviewed metrics on a flow basis.
- A consultant helped put the work into one document.
- This guidebook is a working document that will continue to change, and hopefully improve, over time.

Guidebook Purpose

- A tool to help applicants calculate the required metrics.
- Provide additional consistency:
 - Whether information from year 1 or 20 of the project is required
 - Whether the requirement is for a daily or annual number
 - Where only the "change" should be reported
- It is up to the applicant to choose how to calculate each metric.

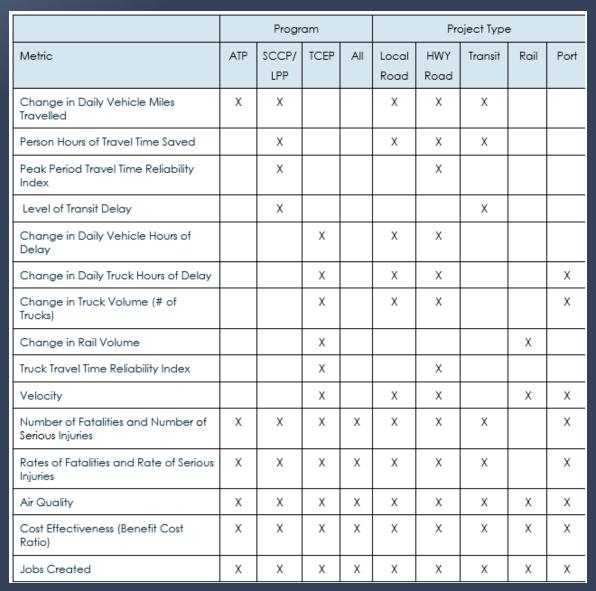
Evaluation Criteria & Metrics

The TCEP evaluation criteria is not the same thing as the performance metrics. The evaluation criteria is based primarily on statute.

The performance metrics (for TCEP) can be considered as a subcategory of evaluation criteria.

The applicant must provide narrative information for all evaluation criteria.

The applicant should also provide quantitative information for evaluation criteria. If the evaluation criteria is also a performance metric, then the performance metric provides the quantitative information.


Metrics Included

- VMT (SCCP/LPP/ATP)
- Person Hours of Travel Time Saved (SCCP/LPP/ATP))
- Change in Daily Vehicle Hours of Delay (TCEP)
- Change in Daily Truck Hours of Delay (TCEP)
- Change in Truck Volume (TCEP)
- Change in Rail Volume (TCEP)
- Peak Period Travel Time Reliability Index (SCCP/LPP)
- Truck Travel Time Reliability Index (TCEP)
- Air Quality (All)
- Cost Effectiveness BCR (All)

- Velocity Freight (TCEP)
- Safety (fatalities & serious injuries) (All)
- Jobs Created (All)
- Transit schedule adherence (SCCP/LPP/ATP)
- The Commission plans to include Accessibility, Equity, Climate Change, and Public Health in the application form as qualitative requests for information.

Metrics

General Guidance

Metric	Required For	Average Annual or Daily	Year 20 or Most Current Available	Performance Metrics Columns Required
Change in Daily Vehicle Miles Travelled	SCCP/LPP/ATP	Daily	Year 20	"No Build"/ "Build" /Change
Person Hours of Travel Time Saved	SCCP/LPP	Daily	Year 20	Change
Peak Period Travel Time Reliability Index	SCCP/LPP (highway only)	Average Daily	Most Current Data Available	"No Build"
Level of Transit Delay	SCCP/LPP (transit bus or rail only)	Average Daily	Most Current Available	"No Build"/ "Build"/ Change
Change in Daily Vehicle Hours of Delay	TCEP (Required for highways, roads, and ports, not required for rail, not for transit)	Average Annual	Year 20	"No Build"/ "Build"/ Change
Change in Daily Truck Hours of Delay – Cal B/C Sketch Model	TCEP (Required for highways, roads, and ports, not required for rail, not for transit)	Average Annual	Year 20	"No Build"/ "Build"/ Change
Change in Truck Volume (# of Trucks)	TCEP (Highway, road and port projects only)	Annual Average	Year 20	"No Build"/ "Build"/ Change

Metric	Required For	Average Annual or Daily	Year 20 or Most Current Available	Performance Metrics Columns Required
Change in Rail Volume	TCEP	Annual Average	Year 20	"No Build"/ "Build"/ Change
	(Rail projects only)			
Truck Travel Time Reliability Index	TCEP	Average Daily	Most current available	"No Build"
itoliability ilidox	(Highway projects only)		a validation	
Velocity	TCEP	Average Annual	Year 20	"No Build"/ "Build"/ "Change"
	(Highway and road projects. Rail and port projects only if information is available)			Ü
Number of Fatalities and Number of Serious Injuries	All Projects (except freight rail and sea port)	Average Annual	Most Current Available	"No Build"/ "Build"/ "Change"
Rate of Fatalities and Rate of Serious Injuries	All Projects (except freight rail and sea port)	Average Annual	Most Current Available	"No Build" <u>/"</u> Build"/ "Change"
Air Quality	All Projects	Average Annual	Looks at average from year 1 through year 20	"Change"
Cost Effectiveness	All Projects	N/A	N/A	"Change"
Job Created	All Projects	N/A	N/A	"Build"

Required Back-Up Information

Metric Name:	Example: Daily Vehicle Hours of Delay
Source Data:	List source(s) of information used in calculations Example: Cal B/C Sketch model

Base Numbers & Calculation for "No Build" Estimate

Include the starting numbers used, and the calculation used to develop the "No Build" number. If "No Build" is not required for metric, put "N/A" for "Not Applicable."

Example:

- Travel Time tab cell C118: Year 20 No Build Average Volume: 2,070,981
- Travel Time tab cell 1118: Year 20 No Build Average Travel Time: 0.01
- Speed limit travel time = 0.4 (impacted length) divided by 65 (speed limit) = 0.006
- 0.01 (No Build average travel time) minus 0.006 (speed limit average travel time) = 0.004
- 2,070,981 (No Build average volume) multiply by 0.004 = 8,284
- 8,284/ 365 (days) = 23

Base Numbers, Trends or Assumptions, and Calculation for "Build" Number

Include the starting numbers used, and the calculation used to develop the "No Build" number. Include any trends or assumptions used. Explain how the impact of the "Build" number was estimated. If "Build" is not required for metric, put "N/A" for "Not Applicable."

Example

- Travel Time tab cell D118: Year 20 Build Average Volume: 2,080,000
- Travel Time tab cell J118: Year 20 Build Average Travel Time: 0.009
- Speed limit travel time = 0.4 (impacted length)/ 65 (speed limit) = 0.006
- 0.009 (No Build average travel time) 0.006 (speed limit average travel time) = 0.003
- 2,080,000 (Build average volume) multiply by 0,003 = 6,240
- 6,240/365 (days) = 17

Change

Include the subtraction used to get to the change number here. Example:

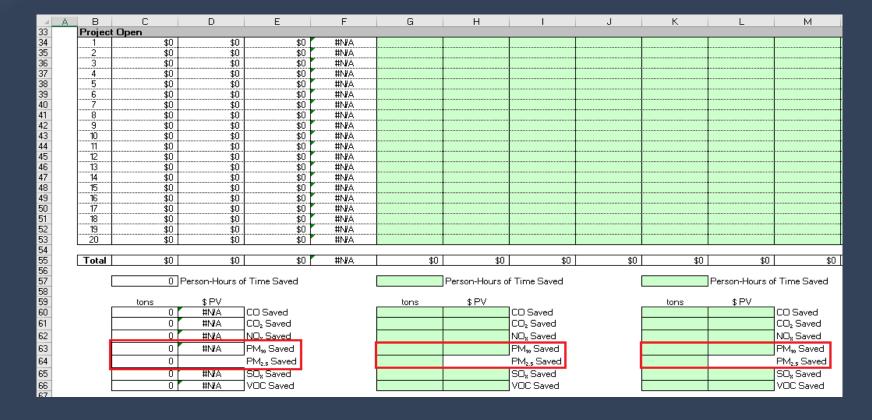
All Program Metrics

Metric	Generalized Formula	Source(s) in Guidebook
Air quality	change in tons of particulates	Cal B/C Sketch model
Benefit cost ratio	total benefits / total costs	Cal B/C Sketch model
Safety	fatalities & serious injuries over 5 years / 5 and # / VMT / 5 * 1 million	Cal B/C Sketch model Caltrans collision data Caltrans safety guidance CHP SWITRS data
Jobs created	.000013 * total project cost	Federal formula

Examples Only

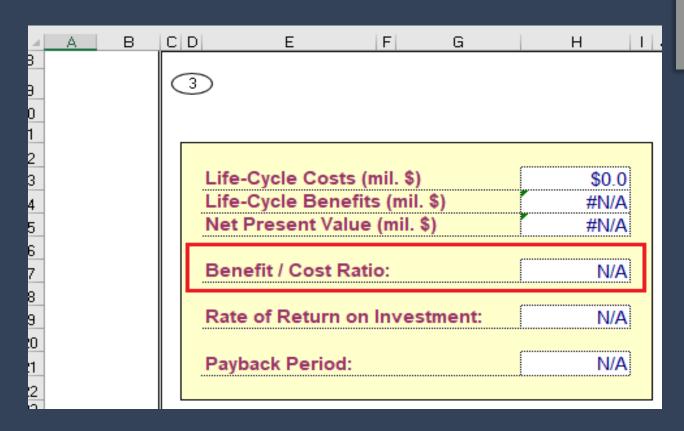
- Please note: THE FOLLOWING EXAMPLES ARE NOT THE STEP BY STEP CALCULATIONS FROM THE GUIDELINES.
- It would take too much time to walk through all of the steps for each calculation, so I included some of the steps to give you a general understanding of the calculation and how the guidebook works. For the complete calculation, please see the guidelines.

Air Quality – Cal B/C "Results" Tab



1	K L M	N	0	Р	Q	R	ST
10							
11			D	Facility	Tetal Over	A	
12	ITEMIZED BENEFITS (mil \$)		Passenger Benefits	Freight Benefits	Total Over 20 Years	Average Annual	
13	ITEMIZED BENEFITS (mil. \$) Travel Time Savings	ĺ	\$0.0	\$0.0	\$0.0	\$0.0	
14 15	Veh. Op. Cost Savings		\$0.0	\$0.0	\$0.0	\$0.0	
16	Accident Cost Savings		\$0.0	\$0.0	\$0.0	\$0.0	
17	Emission Cost Savings		#N/A	#N/A	#N/A	#N/A	
18	TOTAL BENEFITS		#N/A	#N/A	#N/A	#N/A	
19							
20	Person-Hours of Time Saved	d			0	0	
21				······································		-	
22							
23							_
24			Tot		Value (r	nil. \$)	
25			Total Over	Average	Total Over	Average	
26	EMISSIONS REDUCTION		20 Years	Annual	20 Years	Annual	
27	CO Emissions Saved		0	0	#N/A	#N/A	
28	CO ₂ Emissions Saved		0	0	#N/A	#N/A	
29	NO _X Emissions Saved		0	0	#N/A	#N/A	
30	PM _{2.5} Emissions Saved		0	0	#N/A	#N/A	
31					,		
32	SO _X Emissions Saved		0	0	#N/A	#N/A	
33	VOC Emissions Saved		0	0	#N/A	#N/A	
34							
35							

Air Quality – Cal B/C "Emissions Reduction" Tab


	TOTAL	.VMT	RUNNING E	MISSIONS	STARTING E	EMISSIONS			TONS EMISSIONS SAVED						DOLLARS EMISSIONS SAVED						
	(veh-mi	les/yr)	(\$/)	л)	(\$/)	yr)						(tons/yr)						(PV	\$/yr)		
							Constant	Present													
l N	lo Build	Build	No Build	Build	No Build	Build	Dollars	Value	CO	CO2	NO.	PM ₁₀	SO,	VOC	PM _{2.5}	CO	CO₂	NO.	PM ₁₀	SO,	VOC
0	0	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	0	0	0	0	0	0	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
0	0	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	0	0	0	0	0	0	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A

Benefit Cost Ratio

- Total Benefits/Total Costs
- Cal B/C model captures the total user benefits in constant dollars for travel time savings, vehicle operating cost savings, accident reductions, and vehicle emission reductions.
- If you want to add more benefits, you will need to provide a separate calculation.

Safety – Accident Rates

- 1) Fatalities & serious injuries over 5 years / 5
- 2) # / VMT / 5 * 1 million
- For safety, you find the accident and fatality rate for the build scenario.

You must find the rate group in Caltrans' 2018 Traffic Collision Data

document.

10/6	0/6/2020 BASIC AVERAGE CRASH RATE TABLE FOR HIGHWAYS													
RA	ΛΤΕ	BASE	+ ADT	PCT	PCT	PCT		TERRAIN	DESIGN		CRASH COS	STS (\$1,000)		
GR	OUP	RATE	FACTOR	FAT	INJ	F+I	HIGHWAY TYPE	OR ADT	SPEED	AREA	F+I	ALL		
Н	01	0.78	0.29900 /	2.5	40.2	42.7	CONVENTIONAL 2 LANES OR LESS	FLAT	<=55	RURAL	806.8	349.4		
Н	Û2	0.70	0.00000	3.2	38.9	42.1	CONVENTIONAL 2 LANES OR LESS	FLÁT	>55	RURÁL	1001.4	426.6		
Н	03	1.14	0.72800 /	2.6	44.3	46.9	CONVENTIONAL 2 LANES OR LESS	ROLL	<=55	RURAL	772.1	366.7		
Н	04	0.65	0.47100 /	3.5	41.5	45.0	CONVENTIONAL 2 LANES OR LESS	ROLL	>55	RURAL	1021.1	464.2		
Н	05	1.57	0.42100 /	2.6	47.0	49.6	CONVENTIONAL 2 LANES OR LESS	MTN	<=55	RURAL	738.5	370.6		
Н	06	0.91	0.47600 /	2.8	42.3	45.1	CONVENTIONAL 2 LANES OR LESS	MTN	>55	RURAL	846.2	386.3		
Н	07	1.60	0.00000	1.0	38.3	39.3	CONVENTIONAL 2 LANES OR LESS		<45	SUBURBAN	417.1	170.6		
Н	08	1.32	0.00000	1.7	44.3	46.0	CONVENTIONAL 2 LANES OR LESS		45-55	SUBURBAN	538.5	253.7		

Safety Collision Reduction Factors

- You can estimate accident rate reductions using some Caltrans reduction factor information or other information.
- On the right is an example of the information in the guidebook.

Collision Reduction Factors for Highway Safety Projects (from the 2017 State Highway Safety Improvement Program Guidelines)

Type of Improvement	Average Collision Reduction	Years (Life)	Minimum Collision Experience
New Signals	Up to 20%	15	5 or more last year
Modified Signals	Up to 20% (1)	15	5 or more last year
Flashing Beacons	Up to 20%	10	

Left-Turn Channelization:

Type of Improvement	Average Collision Reduction	Years (Life)	Minimum Collision Experience
Signalization w/o LT Phase	Up to 15% (2)	20/10*	4 or more last 3 years
Signalization with LT Phase	Up to 35% (2)	20/10*	4 or more last 3 years
Non-signalized Intersection	Up to 35% (2)	20/10*	4 or more last 3 years
Two-Way Left-Turn Lanes	Up to 25% (2)	20/10*	4 or more last 3 years
Enhanced Lighting	Up to 15% (3)	15	4 or more night collisions last 3 years
Curve Improvement	Up to 50% (2)	20	4 or more last 3 years
Rumble Strip	Up to 50% (4)	10	4 or more last 3 years, Base Rate of 0.01
Super Elevation Improvement	Up to 50% (4)	20/10*	4 or more last 3 years, Base Rate of 0.01
Truck Escape Ramp	Up to 75% (5)	20	4 or more last 3 years, Base Rate of 0.01

TCEP Metrics

Metric	Generalized Formula	Source(s) in Guidebook
Change in DVHD	Vehicle volumes * travel time – free flow time / 365	Cal B/C Sketch model Local speed limit
Change in daily truck hours of delay	Same as above specific to trucks	Cal B/C Sketch model Local speed limit
Change in truck volume	AADTT change or vehicle volume X truck %	Caltrans Traffic Ops data Cal B/C Sketch model
Change in rail volume	Change in volume of rail cars or trains	Rail companies, port info, or State Rail Plan estimates
Truck travel time reliability	95th percentile TT / 50th Percentile TT	State reliability data/Excel spreadsheet
Velocity	Speed X distance	Cal B/C Sketch model

Daily Vehicle/Truck Hours of Delay

- Vehicle volumes * travel time free flow time / 365 calculate this for no build and build.
- This information can be found in the Travel Time Tab under "Highway Benefits"

It is the same calculation for trucks, you just look in a different place in the model.

	AVERAGE	VOLUME	AVERAGE	SPEED	ANN
	(vehicle	es/yr)	(mpl	1)	
Year					
	No Build	Build	No Build	Build	No
1	0	0	55.0	55.0	
20	0	0	55.0	55.0	

Truck Volume - AADTT

AADTT change or vehicle volume X truck % change

Truck Traffic: Annual Average Daily Truck Traffic

For truck traffic on California State Highways.

2020-AADT Truck (XLSX) | 2019-AADT Truck (XLSX) | 2018-AADT Truck (XLSX) | 2017-AADT Truck (XLSX) | 2016-AADT Truck (XLSX)

Α	В	D	Е	F	GH	I	J	K	L	М	N	0	Р	Q	R	S	Т
RTE	RTE_SFX	CNT	◆ POSTMILE_PFX	POSTMILE	POSTMILE_SFX	DESCRIPTION	VEHICLE_AADT_TOTAL	TRUCK_AADT_TOTAL	TRK_PERCENT_TOT	TRK_2_AXLE	TRK_3_AXLE	TRK_4_AXLE	TRK_5_AXLE	TRK_2_AXLE_PCT	TRK_3_AXLE_PCT	TRK_4_AXLE_PCT	TRK_5_AXLE_PCT
001	1:	ORA	R	0.129	Α	DANA POINT, JCT. RTE. 5	38250	2379	6.22	807	1,126	319	128	33.93	47.32	13.39	5.36
001	12	ORA		0.780		DANA POINT, DOHENY PARK ROAD	38900	1894	4.87	643	896	254	102		47.32		5.36
001		ORA		9.418	В	LAGUNA BEACH, JCT. RTE. 133 NORTH	38800	675	1.74	264	310	62	39	39.08	45.98	9.20	5.75
001	12	ORA		9.418	Α	LAGUNA BEACH, JCT. RTE. 133 NORTH	38800	675	1.74	264	310	62	39	39.08	45.98	9.20	5.75
001	12	ORA		19.797	В	NEWPORT BEACH, JCT. RTE. 55, NEWPORT BOULEVARD	49600	565	1.14	435	78	26	26	76.92	13.85	4.62	4.62
001	12	ORA		19.797	Α	NEWPORT BEACH, JCT. RTE. 55, NEWPORT BOULEVARD	49600	397	0.80	273	62	12	50	68.75	15.63	3.13	12.50
001	12	ORA		21.549	В	SANTA ANA RIVER BRIDGE	38800	272	0.70	187	43	9	34	68.75	15.63	3.13	12.50

Using a Percent to Trend

Calculation	AADT avg	plus	AADT avg	multiply by	Growth Percentage	= AADT number for Future year
Year 2	156300	plus product of	156,300	multiply by	2%	Year 2 number =159,426
Year 3	159,426	plus product of	159,426	multiply by	2%	Year 3 base year number
Year 4	Year 3 base year number	plus product of	Year 3 base year number	multiply by	2%	Year 4 base year number
Year 5	Year 4 base	Plus	Year 4 base year number	multiply by	2%	Year 5 base year number

Rail Volume – Train Volume Tables from Rail Plan

Change in volume of rail cars or trains

Table 18: Adjustment Factors to 2013 California State Rail Plan Freight Train Volume Estimates by Rail Corridor and Rail Service Type, 2013 and 2040

Rail Corridor	Origin-Destination-Railroad Combinations of Freight Flows through Rail		Base Year Freight Train Volumes Adjustment Factor (2013 to 2007 ratio)		Forecast Year Freight Train Volumes Adjustment Factor (2040 to 2007 ratio)	
Location	Corridor	CL	IM	CL	IM	
Rail segments east of Oakland, north of San Jose, west of Sacramento and west of Stockton	Originating or terminating by any railroad in San Francisco Bay Area	0.75	0.70	1.23	2.26	
Rail segments east of LA, north of Orange, south of Barstow and west of Colton	Originating or terminating by any railroad in Southern California	0.85	0.99	1.38	2.15	
Rail segments between Sacramento and Barstow and Sacramento and Los Angeles	(a) Originating or terminating by BNSF in San Francisco Bay Area or Northern California and headed to or coming from anywhere except Pacific northwestern parts of U.S., (b) Originating or terminating by UP in San Francisco Bay Area or Northern California and headed to or coming from Southern California or southwestern and southeastern parts of U.S., (c) Originating or terminating by any railroad in Central Valley, (d) Originating or terminating by any railroad in Southern California and headed to or coming from Pacific northwestern parts of U.S., (e) Through CA.	1.00	1.02	1.62	2,68	
Rail segments east of Sacramento	(a) Originating or terminating by UP in San Francisco Bay Area or Northern California and headed to or coming from none of the following: Pacific northwestern parts of U.S. or southwestern and southeastern parts of U.S. or Southem California; (b) Originating or terminating by UP in Central Valley or Southern California and headed to or coming from one of the following states: ID, MTor WY.	0.94	0.97	1.50	3.60	
Rail segments north of Sacramento	(a) Originating or terminating by any railroad in San Francisco Bay Area or Central Valley or Southern California and headed to or coming from: Pacific northwestern parts of U.S.; (b) Originating or terminating by any railroad in Northern California; (c)	0.70	0.95	1.02	2.63	

Reliability

95th percentile TT / 50th Percentile TT

		Trave		
TMC	Period	50th Percentile	95th Percentile	TTTR
102+04102	4–8 Weekdays	49.9	56.6	1.13
102+04102	Overnight	39.8	51.1	1.28
102+04102	Weekend	41.3	44.4	1.08
102+04103	6-10 Weekdays	20.2	42.6	2.11
102+04103	10-4 Weekdays	20.2	72.4	3.58
102+04103	4-8 Weekdays	61.3	108.4	1.77
102+04103	Overnight	18.4	26.0	1.41
102+04103	Weekend	19.4	24.4	1.26

Example:

6 to 10 am:

95th percentile, 150.0 = 1.49 TTTR

50th percentile, 101.0

9.1.1.9 To complete the Truck Travel Time Reliability Index calculation, review each of the 5 time periods for each segment and find the maximum TTTR value.

Reliable Segment 5 Time Period Example:

Segment	TTTR_AMP	TTTR_MIDD	TTTR_PMP	TTTR_WE	TTTR_OVN	MAX
(Designated	(6am-10am)	(10am-4pm)	(4pm-8pm)	(6am-8pm)	(8pm-6am)	TTTR =
by a Travel	1.07	1.14	1.24	1.4	1.09	1.4
Time Code)						

6:00 a.m. – 10:00 a.m. weekdays
10:00 a.m. – 4:00 p.m. weekdays
4:00 p.m. – 8:00 p.m. weekdays
8:00 p.m. – 6:00 a.m. every day
6:00 a.m. – 8:00 p.m. weekends

Velocity

Speed X distance

1B HIGHWAY DESIGN AND TRAFFIC DATA				
Highway Design	No Build	Build		
Roadway Type (Fwy, Exp, Conv Hwy)	F	F		
Number of General Traffic Lanes				
Number of HOV/HOT Lanes				
HOV Restriction (2 or 3)				
Exclusive ROW for Buses (y/n)	N			
Highway Free-Flow Speed		0		
Ramp Design Speed (if aux. lane/off-ramp proj.)	35	35		
Length (in miles) Highway Segment		0.0		
Impacted Length	0.0	0.0		

AVERAG	E SPEED	
(mph)		
No Build	Build	
55.0	55.0	
55.0	55.0	

SCCP/LPP Metrics

Metric	Generalized Formula	Source(s) in Guidebook	
Person hours of travel time saved	travel time * person trips	Cal B/C Sketch model	
Peak period travel time reliability	80th percentile TT / 50th Percentile TT	State reliability data/Excel spreadsheet	
Level of transit delay	median number of minutes late	GTFS-RT	
Change in daily VMT	Various formulas	Travel demand models NCST calculator Cal B/C Sketch model Traffic Ops data	

Questions

Thank You

More Information

www.catc.ca.gov

Email: ctc@catc.ca.gov

